Beowawe Hot Springs Geothermal Area
Contents
- 1 Area Overview
- 2 History and Infrastructure
- 3 Regulatory and Environmental Issues
- 4 Future Plans
- 5 Exploration History
- 6 Well Field Description
- 7 Research and Development Activities
- 8 Technical Problems and Solutions
- 9 Geology of the Area
- 10 Geofluid Geochemistry
- 11 NEPA-Related Analyses (0)
- 12 Exploration Activities (1)
- 13 References
Area Overview
Geothermal Area Profile |
Location: | Beowawe, Nevada | |
Exploration Region: | Central Nevada Seismic Zone Geothermal Region | |
GEA Development Phase: | Operational "Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property. |
|
Coordinates: | 40.5700°, -116.5800° | |
Resource Estimate |
Mean Reservoir Temp: | 210°C 483.15 K 410 °F 869.67 °R |
[1] |
Estimated Reservoir Volume: | 8.84 km³ 8,840,000,000 m³ 2.121 mi³ 312,181,653,813.64 ft³ 11,562,283,471.96 yd³ 8,840,000,000,000 L |
[2] |
Mean Capacity: | 17 MW 17,000 kW 17,000,000 W 17,000,000,000 mW 0.017 GW 1.7e-5 TW |
[3] |
USGS Mean Reservoir Temp: | 215°C 488.15 K 419 °F 878.67 °R |
[4] |
USGS Estimated Reservoir Volume: | 5 km³ | [4] |
USGS Mean Capacity: | 54 MW | [4] |
- "The Beowawe Geothermal Area is located on the border of Eureka and Lander counties in Whirlwind Valley, Nevada about 10 miles East of the town of Beowawe. It is one of the state’s largest geothermal fields with some of the highest reported subsurface temperatures, making the area ideal for development of geothermal power production.'"`UNIQ--ref-00000006-QINU`"' The area is home to the Beowawe power plant, with an original installed capacity of 16.7 MW in 1985. In 2006 it was increased to 17.7 MW after improvements were made in reinjection strategies, and in 2011 a new binary, bottoming-cycle plant was added, producing an additional 1.5 MW using the 205°F “waste” water from the existing double-flash geothermal plant. This latter project was funded by a $2 million DOE Recovery Act grant and an additional $4 million from private investors. The project provided 19 construction jobs in 2010 to a town with a population of 1,699 at the time.'"`UNIQ--ref-00000007-QINU`"' The plant is currently owned by Beowawe Power, LLC and operated by Terra-Gen Power." cannot be used as a page name in this wiki.
- The given value was not understood.
The area is home to the Beowawe power plant, with an original installed capacity of 16.7 MW in 1985. In 2006 it was increased to 17.7 MW after improvements were made in reinjection strategies, and in 2011 a new binary, bottoming-cycle plant was added, producing an additional 1.5 MW using the 205°F “waste” water from the existing double-flash geothermal plant. This latter project was funded by a $2 million DOE Recovery Act grant and an additional $4 million from private investors. The project provided 19 construction jobs in 2010 to a town with a population of 1,699 at the time.[6] The plant is currently owned by Beowawe Power, LLC and operated by Terra-Gen Power.
History and Infrastructure
Operating Power Plants: 1 |
Add a new Operating Power Plant |
Developing Power Projects: 0 |
No geothermal projects listed. |
Add a new Developing Power Project |
Power Production Profile |
Gross Production Capacity: | ||
Net Production Capacity: | ||
Owners : |
|
|
Power Purchasers : | ||
Other Uses: | ||
Regulatory and Environmental Issues
Future Plans
With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years.
Exploration History
First Discovery Well |
Completion Date: | ||
Well Name: | ||
Location: | ||
Depth: | ||
Initial Flow Rate: | ||
Flow Test Comment: | ||
Initial Temperature: | ||
Use the "Edit With Form" menu option to add content
Well Field Description
Well Field Information |
Development Area: | ||
Number of Production Wells: | ||
Number of Injection Wells: | ||
Number of Replacement Wells: | ||
Average Temperature of Geofluid: | 212 °C 485.15 K 413.6 °F 873.27 °R |
[8] |
Sanyal Classification (Wellhead): | Moderate Temperature | |
Reservoir Temp (Geothermometry): | ||
Reservoir Temp (Measured): | 227 °C 500.15 K 440.6 °F 900.27 °R |
[8] |
Sanyal Classification (Reservoir): | Moderate Temperature | |
Depth to Top of Reservoir: | 2042 m 2.042 km 1.269 mi 6,699.475 ft 2,233.152 yd |
[1] |
Depth to Bottom of Reservoir: | 2926 m 2.926 km 1.818 mi 9,599.738 ft 3,199.903 yd |
[1] |
Average Depth to Reservoir: | 2484 m 2.484 km 1.543 mi 8,149.607 ft 2,716.527 yd |
|
Use the "Edit with Form" button at the top of the page to add a Well Field Description
Research and Development Activities
In 2011, the Beowawe plant was the first geothermal project funded under the American Recovery and Reinvestment Act (ARRA) to start generating power in a bottoming-cycle operation. The new low-temperature binary cycle plant uses waste heat from the geothermal brine of an existing geothermal plant at the facility. The new plant added approximately 2 megawatts of clean renewable energy capacity to the existing plant. The $2 million ARRA grant from DOE’s Geothermal Technology program will leverage an additional $4 million in private sector investment to support the projects at the Beowawe plant.
Technical Problems and Solutions
The problem was addressed by engineers and geologists by shifting to new injection strategies. The new strategy, undertaken in February 1994, involved switching injection to well 85-18, which was closer to the production wells and in much better hydraulic communication with the reservoir. The new injection provided more pressure support to the reservoir, slowing the influx of colder groundwater. This increased the combined flow rate of the three production wells to 4,090 gpm and reduced the decline rate of temperature over the course of the following two years. The plant resumed full output of 16.7 MW by the third quarter of 1994, but it again started to decline, starting at a rate of about 0.4 MW per year. By mid-1997 the rate of decline in gross power output slowed to approximately 0.15 MW per year, with negligible power decline by summer of 1998.[9] A number of studies, including a numerical model by GeothermEx in 2004 have evaluated the temperature decline and subsequent renewal of the Beowawe geothermal reservoir, giving a better understanding of subsurface fluid flow in the area. These studies make use of a wealth of historical data of reservoir pressures, non-condensable gas concentrations, enthalpy values, reservoir temperatures, and tracer test results to insure that the model closely represents the performance of the Beowawe reservoir. These studies helped increase the plant gross output to 17.7 MW by 2006. The success of these injection strategies and subsequent modeling has increased knowledge of geothermal reservoirs’ recharge and has improved the industry’s ability to overcome similar reservoir temperature and pressure declines in other development areas, especially in the Basin and Range.
Geology of the Area
Geologic Setting |
Geologic Features |
Modern Geothermal Features: | [11] | |
Relict Geothermal Features: | Hydrothermal Alteration | [8] |
Volcanic Age: | no volcanism | |
Host Rock Age: | Ordovician | [12] |
Host Rock Lithology: | shale; quartzite | [12] |
Cap Rock Age: | Tertiary | [8] |
Cap Rock Lithology: | Tuffaceous sedimentary | [8] |
The Beowawe geothermal system in northern Nevada is a structurally controlled, water-dominated resource with a measured wellhead temperatures of 212°C and reservoir temperatures of up to 250°C as indicated by geochemical studies. Surface expression of the system consists of a large, active opaline sinter terrace that is present along a Tertiary to Quaternary normal fault escarpment. The area is underlain by a 950 to 1300 m thick section of Miocene dacite to basalt lava flows interbedded with tuffaceous sedimentary rocks overlie and are faulted against Ordovician Valmy Formation rocks, which host the reservoir. The Valmy Formation in the area consists of siltstone, quartzite, chert and argillite. Tertiary tuffaceous sedimentary rocks cap the system which is controlled by the intersection of the Malpais fault and a south dipping, N70"W trending fault. The fault intersection, which has probably formed a dilation breccia, plunges steeply to the west.[8]
Geofluid Geochemistry
Geochemistry |
Salinity (low): | 350 | [12] |
Salinity (high): | 1050 | [12] |
Salinity (average): | 700 | |
Brine Constituents: | ||
Water Resistivity: | ||
Use the "Edit With Form" menu option to add content
NEPA-Related Analyses (0)
Below is a list of NEPA-related analyses that have been conducted in the area - and logged on OpenEI. To add an additional NEPA-related analysis, see the NEPA Database.
CSV No NEPA-related documents listed.
Exploration Activities (1)
Below is a list of Exploration that have been conducted in the area - and cataloged on OpenEI. Add a new Exploration Activity
Page | Technique | Activity Start Date | Activity End Date | Reference Material |
---|---|---|---|---|
Aerial Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) | Aerial Photography |
References
- ↑ 1.0 1.1 1.2 Beowawe Geothermal Field [Internet]. [updated 2015/03/18;cited 2015/05/05]. Available from: http://www.onlinenevada.org/articles/beowawe-geothermal-field
- ↑ Geothermex Inc.. 2004. New Geothermal Site Identification and Qualification. Richmond, CA: California Energy Commission. Report No.: P500-04-051. Contract No.: 500-04-051.
- ↑ Kevin Faure, Brian Carey, Chris Bromley, Peter Barnett. Australasian Update – 2014 [Internet]. GNS Science. [cited 2015/05/05]. Available from: http://www.geothermal.org/Annual_Meeting/PDFs/Australasia.pdf
- ↑ 4.0 4.1 4.2 U.S. Geological Survey. 2008. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States. USA: U.S. Geological Survey. Report No.: Fact Sheet 2008-3082.
- ↑ http://www.onlinenevada.org
- ↑ http://Terra-genpower.com
- ↑ http://www.nbmg.unr.edu
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 http://pubs.geothermal-library.org/lib/grc/1001063.pdf
- ↑ 9.0 9.1 http://www.blackrockfriends.org
- ↑ http://www.atlasgeoinc.com/wp-content/uploads/GRC2011-Faulds.pdf
- ↑ http://pubs.geothermal-library.org/lib/grc/1001216.pdf
- ↑ 12.0 12.1 12.2 12.3 http://www.osti.gov/geothermal/servlets/purl/495688-nFMpIr/495688.pdf
List of existing Geothermal Resource Areas.
{{}}