OEDI SI/Scenarios/Data Imputation Scenario

From Open Energy Information

Data Imputation Scenario​ Summary

  • Date Created: 2024/01/03
  • Organization: ANL
  • Objective: Provide estimate for missing streaming measurement data.
  • Use Case: Data Preprocessing
  • Methodology
    • Inputs
      • Outputs
        • Configuration
          • Webinars


          Docker Container

          Download the docker container at:


          Run Locally

          http://localhost:8080/edit_scenario?Data Imputation Scenario
              Run Locally


          Input Data

          Download input data at:


            Output Data

            Download output data at:

              References


                Back to Data Preprocessing


              1. Denoising Autoencoders (DAEs) are unsupervised Deep learning algorithms.
              2. Encoder encodes training into an encoding on a higher or lower dimensional hyperplane.
              3. Decoder decodes the encoding to reconstruct the original data.
              4. The application imputes on streaming data when missingness is detected.
              5. Input from sensor federate
              6. At each time step, if the sensor data has no missing data then the data imputation federate output/publication is the same as sensor federate publication. If there is missing data point(s) then the data imputation federate will publish an estimate for the missing value.
              7. use_oedisi_preprocessor: true
              8. oedisi_preprocessor_federates: "data_imputation"
              9. System data: https://github.com/openEDI/oedisi-ieee123
              10. User input: https://github.com/openEDI/oedi-si-single-container/blob/main/runner/user_config.json
              11. Depending on the user provided configuration, algorithms will be run and the respective outputs will be generated in csv and feather format.
              12. Instructions on how to access individual run outputs -> https://github.com/openEDI/oedi-si-single-container/tree/main#output