Improved Microseismicity Detection During Newberry EGS Stimulations

Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

Data and Resources

Additional Info

Field Value
Author Lawrence Livermore National Laboratory
Maintainer Dennise Templeton
bureau_code 019:20
Catalog GDR
Contact Phone 925.422.2021
harvest_object_id 48dfaf1d-abf8-41bf-92f9-9d44000bc5d5
harvest_source_id 154c8289-1404-4e71-a217-a08000129ad0
harvest_source_title Geothermal Data Repository (GDR)
Origination Date 2013-11-01
program_code 019:006
Sectors Geothermal
was_harvested true

Package Relationships

Relationship Dataset

Dataset extent

Map data © OpenStreetMap contributors
Tiles by OpenStreetMap