AWAKEN/References

From Open Energy Information

< AWAKEN



This page is intended as a repository for relevant references, prior utility-scale field wake studies and atmospheric research.

References from the Instrumentation Atlas

  • Adrian, R. J., and J. Westerweel, 2011: Particle Image Velocimetry. Cambridge University Press, 585 pp.
  • Ahsbahs, T., M. Badger, P. Volker, K. S. Hansen, and C. B. Hasager, 2018: Applications of satellite winds for the offshore wind farm site Anholt. Wind Energy Sci., 3, 573–588, doi:10.5194/wes-3-573-2018.
  • Aitken, M. L., and J. K. Lundquist, 2014: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar. J. Atmospheric Ocean. Technol., 31, 1529–1539, doi:10.1175/JTECH-D-13-00218.1.
  • ——, M. E. Rhodes, and J. K. Lundquist, 2012: Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks. J. Atmospheric Ocean. Technol., 29, 347–355, doi:10.1175/JTECH-D-11-00033.1.
  • ——, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, 2014: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data. J. Atmospheric Ocean. Technol., 31, 765–787, doi:10.1175/JTECH-D-13-00104.1.
  • Allaerts, D., and J. Meyers, 2018: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions. Bound.-Layer Meteorol., 166, 269–299, doi:10.1007/s10546-017-0307-5.
  • American Institute of Aeronautics and Astronautics, 1988: Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998(2002)). Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American Institute of Aeronautics and Astronautics, Inc. http://arc.aiaa.org/doi/abs/10.2514/4.472855.001 (Accessed July 14, 2016).
  • Angelou, N., and M. Sjöholm, 2015: UniTTe WP3/MC1: Measuring the inflow towards a Nordtank 500kW turbine using three short-range WindScanners and one SpinnerLidar. DTU Wind Energy.
  • Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteorol., 68, 375–385, doi:10.1007/BF00706797.
  • Arnold, C. P., and C. H. Dey, 1986: Observing-Systems Simulation Experiments: Past, Present, and Future. Bull. Am. Meteorol. Soc., 67, 687–695, doi:10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2.
  • Arya, S. P., 2001: Introduction to Micrometeorology. Academic Press, 448 pp.
  • Balsley, B., 2008: The CIRES Tethered Lifting System: a survey of the system, past results and future capabilities. Acta Geophys., 56, 21–57, doi:10.2478/s11600-007-0045-z.
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, and Y. Meillier, 2006: High-resolution in situ profiling through the stable boundary layer: examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmospheric Sci., 63, 1291–1307.
  • Balsley, B. B., G. Svensson, and M. Tjernström, 2007: On the Scale-dependence of the Gradient Richardson Number in the Residual Layer. Bound.-Layer Meteorol., 127, 57–72, doi:10.1007/s10546-007-9251-0.
  • Banta, R. M., L. D. Olivier, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, 1992: Smoke-Column Observations from Two Forest Fires Using Doppler Lidar and Doppler Radar. J. Appl. Meteorol., 31, 1328–1349, doi:10.1175/1520-0450(1992)031<1328:SCOFTF>2.0.CO;2.
  • ——, R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteorol., 105, 221–252.
  • Banta, R. M., and Coauthors, 2015: 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar. J. Atmospheric Ocean. Technol., 32, 904–914, doi:10.1175/JTECH-D-14-00078.1.
  • Barth, M., and A. Raabe, 2011: Acoustic tomographic imaging of temperature and flow fields in air. Meas. Sci. Technol., 22, 35102, doi:10.1088/0957-0233/22/3/035102.
  • Båserud, L., M. Flügge, A. Bhandari, and J. Reuder, 2014: Characterization of the SUMO Turbulence Measurement System for Wind Turbine Wake Assessment. Energy Procedia, 53, 173–183, doi:10.1016/j.egypro.2014.07.226.
  • Båserud, L., J. Reuder, M. O. Jonassen, S. T. Kral, M. B. Paskyabi, and M. Lothon, 2016: Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign. Atmos Meas Tech, 9, 4901–4913, doi:10.5194/amt-9-4901-2016.
  • Berg, J., N. Vasiljević, M. Kelly, G. Lea, and M. Courtney, 2015: Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners. J. Atmospheric Ocean. Technol., 32, 518–527, doi:10.1175/JTECH-D-14-00123.1.
  • Berg, J., A. Natarajan, J. Mann, and E. G. Patton, 2016: Gaussian vs non-Gaussian turbulence: impact on wind turbine loads. Wind Energy, 19, 1975–1989, doi:10.1002/we.1963.
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmospheres, 97, 15787–15801, doi:10.1029/92JD01517.
  • Bianco, L., D. Cimini, F. S. Marzano, and R. Ware, 2005: Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling. J. Atmospheric Ocean. Technol., 22, 949–965.
  • ——, K. Friedrich, J. M. Wilczak, D. Hazen, D. E. Wolfe, R. Delgado, and J. K. Lundquist, 2016: Assessing atmospheric profiles from microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmos Meas Tech, in review.
  • Bischoff, O., I. Würth, J. Gottschall, B. Gribben, J. Hughes, D. Stein, and H. Verhoef, 2016: Recommended Practices for Floating Lidar Systems. https://www.ieawind.org/index_page_postings/whatsNEW/IEA_Wind_Task32_StateOfArtFloatingLIDAR_Feb2016.pdf (Accessed March 26, 2017).
  • Bodini, N., D. Zardi, and J. K. Lundquist, 2017: Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos Meas Tech, 10, 2881–2896, doi:10.5194/amt-10-2881-2017.
  • Bodini, N., J. K. Lundquist, and R. K. Newsom, 2018: Estimation of turbulence dissipation rate and its variability from sonic nemometer and wind Doppler lidar during the XPIA field campaign. Atmospheric Meas. Tech., 11, 4291–4308, doi:https://doi.org/10.5194/amt-11-4291-2018.
  • Boorsma, K., and J. G. Schepers, 2011: Description of experimental setup MEXICO measurements. ECN.
  • Bosbach, J., M. Kühn, and C. Wagner, 2009: Large scale particle image velocimetry with helium filled soap bubbles. Exp. Fluids, 46, 539–547, doi:10.1007/s00348-008-0579-0.
  • Braam, M., F. Beyrich, J. Bange, A. Platis, S. Martin, B. Maronga, and A. F. Moene, 2016: On the Discrepancy in Simultaneous Observations of the Structure Parameter of Temperature Using Scintillometers and Unmanned Aircraft. Bound.-Layer Meteorol., 158, 257–283, doi:10.1007/s10546-015-0086-9.
  • Bradley, S., 2007: Atmospheric Acoustic Remote Sensing: Principles and Applications. CRC Press, 304 pp.
  • Brower, M., 2012: Wind Resource Assessment: A Practical Guide to Developing a Wind Project. John Wiley & Sons, 298 pp.
  • Brugger, P., K. Träumner, and C. Jung, 2016: Evaluation of a Procedure to Correct Spatial Averaging in Turbulence Statistics from a Doppler Lidar by Comparing Time Series with an Ultrasonic Anemometer. J. Atmospheric Ocean. Technol., 33, 2135–2144, doi:10.1175/JTECH-D-15-0136.1.
  • Bruun, H. H., 1995: Hot-wire Anemometry: Principles and Signal Analysis. Oxford University Press, 534 pp.
  • Burns, S. P., T. W. Horst, L. Jacobsen, P. D. Blanken, and R. K. Monson, 2012: Using sonic anemometer temperature to measure sensible heat flux in strong winds. Atmos Meas Tech, 5, 2095–2111, doi:10.5194/amt-5-2095-2012.
  • Butterfield, C. P., W. P. Musial, and D. A. Simms, 1992: Combined Experiment Phase 1. Final Report. National Renewable Energy Laboratory, Golden, CO (United States), https://www.osti.gov/scitech/biblio/10105837 (Accessed March 30, 2017).
  • Caicedo, V., B. Rappenglueck, B. Lefer, G. Morris, D. Toledo, and R. Delgado, 2016: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer backscatter data. Atmos Meas Tech Discuss, 2016, 1–24, doi:10.5194/amt-10-1609-2017.
  • Campbell Scientific, Inc. 2018a. "41303-5A 6-Plate Solar Radiation Shield." https://www.campbellsci.com/41303-shield.
  • Campbell Scientific, Inc. 2018b. "CSAT3B 3-D Sonic Anemometer with Integrated Electronics." https://www.campbellsci.com/csat3b
  • Carbajo Fuertes, F. C., G. V. Iungo, and F. Porté-Agel, 2014: 3D Turbulence Measurements Using Three Synchronous Wind Lidars: Validation against Sonic Anemometry. J. Atmospheric Ocean. Technol., 31, 1549–1556, doi:10.1175/JTECH-D-13-00206.1.
  • Castro, F. A., J. M. L. M. Palma, and A. S. Lopes, 2003: Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k∈ Turbulence Model). Bound.-Layer Meteorol., 107, 501–530, doi:10.1023/A:1022818327584.
  • Champagne, F. H., 1978: The fine-scale structure of the turbulent velocity field. J. Fluid Mech., 86, 67–108.
  • Chang, J. C., and S. R. Hanna, 2004: Air quality model performance evaluation. Meteorol. Atmospheric Phys., 87, 167–196, doi:10.1007/s00703-003-0070-7.
  • Charnock, H., 1955: Wind stress on a water surface. Q. J. R. Meteorol. Soc., 81, 639.
  • Chehbouni, A., and Coauthors, 2000: Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric. For. Meteorol., 105, 215–226, doi:10.1016/S0168-1923(00)00187-8.
  • Chow, F. K., and R. L. Street, 2009: Evaluation of Turbulence Closure Models for Large-Eddy Simulation over Complex Terrain: Flow over Askervein Hill. J. Appl. Meteorol. Climatol., 48, 1050–1065, doi:10.1175/2008JAMC1862.1.
  • Churchfield, M., Q. Wang, A. Scholbrock, T. Herges, T. Mikkelsen, and M. Sjöholm, 2016: Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment. J. Phys. Conf. Ser., 753, 32009, doi:10.1088/1742-6596/753/3/032009.
  • Churchfield, M. J., S. Lee, J. Michalakes, and P. J. Moriarty, 2012: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul., 13, N14, doi:10.1080/14685248.2012.668191.
  • Cimini, D., and Coauthors, 2011: Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry. IEEE Trans. Geosci. Remote Sens., 49, 4959–4969, doi:10.1109/TGRS.2011.2154337.
  • Clifton, A., D. Elliott, and M. Courtney, 2013a: Ground-based Vertically-profiling remote sensing for Wind Resource Assessment. https://www.ieawind.org/index_page_postings/RP/RP%2015_RemoteSensing_1stEd_8March2013.pdf (Accessed March 26, 2017).
  • ——, S. Schreck, G. Scott, N. Kelley, and J. K. Lundquist, 2013b: Turbine Inflow Characterization at the National Wind Technology Center. J. Sol. Energy Eng., 135, 31017-031017–11, doi:10.1115/1.4024068.
  • Cohn, S. A., and W. M. Angevine, 2000: Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars. J. Appl. Meteorol., 39, 1233–1247, doi:10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.
  • Collaud Coen, M., C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and B. Calpini, 2014: Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos Chem Phys, 14, 13205–13221, doi:10.5194/acp-14-13205-2014.
  • Coulter, R. L., and D. J. Holdridge, 1998: A Procedure for the Automatic Estimation of Mixed Layer Height. Proceedings of the Eight ARM Science Team Meeting, Eighth ARM Science Team Meeting, Tucson, AZ https://www.arm.gov/publications/proceedings/conf08/extended_abs/coulter_rl.pdf (Accessed March 31, 2017).
  • Courtney, M., R. Wagner, and P. Lindelöw, 2008: Commercial lidar profilers for wind energy. A comparative guide. Proceedings of EWEC 2008, 9 https://www.renewablenrgsystems.com/assets/resources/Commercial-Lidar-Profilers-for-Wind-Energy-Whitepaper.
  • The Crown Estate, 2014: UK MERRA Validation With Offshore Meteorological Data. https://www.thecrownestate.co.uk/media/389807/ei-uk-merra-validation-with-offshore-meteorological-data.pdf (Accessed March 26, 2017).
  • Cui, Y. Y., and Coauthors, 2015: Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin. J. Geophys. Res. Atmospheres, 120, 2014JD023002, doi:10.1002/2014JD023002.
  • Dagestad, K.-F., and Coauthors, 2013: WIND RETRIEVAL FROM SYNTHETIC APERTURE RADAR - AN OVERVIEW. Proceedings of SEASAR 2012, Vol. 709 of, SEASAR 2012 Advances in SAR Oceanography, European Space Agency - SP, 23 https://www.researchgate.net/publication/274248910_WIND_RETRIEVAL_FROM_SYNTHETIC_APERTURE_RADAR_-_AN_OVERVIEW (Accessed March 26, 2017).
  • Dantec Dynamics. 2017. https://www.dantecdynamics.com/measurement-principles-of-piv
  • Debnath, M., and Coauthors, 2017a: Assessment of virtual towers performed with scanning wind lidars and Ka-band radars during the XPIA experiment. Atmos Meas Tech, 10, 1215–1227, doi:10.5194/amt-10-1215-2017.
  • ——, and Coauthors, 2017b: Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans. Atmos Meas Tech, 10, 431–444, doi:10.5194/amt-10-431-2017.
  • Dérian, P., C. F. Mauzey, and S. D. Mayor, 2015: Wavelet-Based Optical Flow for Two-Component Wind Field Estimation from Single Aerosol Lidar Data. J. Atmospheric Ocean. Technol., 32, 1759–1778, doi:10.1175/JTECH-D-15-0010.1.
  • Dörenkämper, M., B. Witha, G. Steinfeld, D. Heinemann, and M. Kühn, 2015: The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. J. Wind Eng. Ind. Aerodyn., 144, 146–153, doi:10.1016/j.jweia.2014.12.011.
  • Duncan Jr., J. B., Hirth, B. D., and J. L. Schroeder. 2019: “Enhanced Estimation of Boundary Layer Advective Properties to Improve Space-to-Time Conversion Processes for Wind Energy Applications,” Journal of Wind Energy, 1-16, https://doi.org/10.1002/we.2350.
  • Duncan, J. B., B. D. Hirth, and J. L. Schroeder, 2019: “Doppler Radar Measurements of Spatial Turbulence Intensity and Stability-Induced Changed in Wind Turbine Wake Structure,” Journal of Applied Meteorology and Climatology, 58, 1535-1555.
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF Wind Profiler for the Boundary Layer: Brief Description and Initial Results. J. Atmospheric Ocean. Technol., 5, 432–441, doi:10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2.
  • Elliott, G. S., and T. J. Beutner, 1999: Molecular filter based planar Doppler velocimetry. Prog. Aerosp. Sci., 35, 799–845, doi:10.1016/S0376-0421(99)00008-1.
  • Elston, J., B. Argrow, M. Stachura, D. Weibel, D. Lawrence, and D. Pope, 2015: Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling. J. Atmospheric Ocean. Technol., 32, 97–115, doi:10.1175/JTECH-D-13-00236.1.
  • Emeis, S., 2010: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Springer Science & Business Media, 181 pp.
  • ——, 2012: Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Springer Science & Business Media, 202 pp.
  • Engelbart, D. A. M., M. Kallistratova, and R. Kouznetsov, 2007: Determination of the turbulent fluxes of heat and momentum in the ABL by ground-based remote-sensing techniques (a Review). Meteorol. Z., 16, 325–335, doi:10.1127/0941-2948/2007/0224.
  • Fast, J. D., R. K. Newsom, K. J. Allwine, Q. Xu, P. Zhang, J. H. Copeland, and Sun, 2007: Development of NEXRAD Wind Retrievals as Input to Atmospheric Dispersion Models - PNNL-16399.pdf. Pacific Northwest National Laboratory, Richland, WA, https://www.pnl.gov/main/publications/external/technical_reports/PNNL-16399.pdf (Accessed March 29, 2017).
  • Fernando, H.J.S., J. K. Lundquist, and S. Oncley, 2017: Monitoring wind in Portugal’s mountains down to microscales. Eos, 98, https://doi.org/10.1029/2017EO074745. Published on 31 May 2017.
  • ——, and co-authors, 2019: The Perdigão: Peering into Microscale Details of Mountain Winds. The Bulletin of the American Meteorological Society, in review.
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Weather Rev., 140, 3017–3038, doi:10.1175/MWR-D-11-00352.1.
  • Fleming, P., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S., ... & Schlipf, D., 2017:. Full-scale field test of wake steering. In Journal of Physics: Conference Series(Vol. 854, No. 1, p. 012013). IOP Publishing.
  • Foken, T., 2008: Micrometeorology. Springer Science & Business Media, 320 pp.
  • de Franceschi, M., D. Zardi, M. Tagliazucca, and F. Tampieri, 2009: Analysis of second-order moments in surface layer turbulence in an Alpine valley. Q. J. R. Meteorol. Soc., 135, 1750–1765, doi:10.1002/qj.506.
  • Frehlich, R., S. M. Hannon, and S. W. Henderson, 1998: Coherent Doppler Lidar Measurements of Wind Field Statistics. Bound.-Layer Meteorol., 86, 233–256, doi:10.1023/A:1000676021745.
  • ——, Y. Meillier, M. L. Jensen, and B. Balsley, 2003: Turbulence Measurements with the CIRES Tethered Lifting System during CASES-99: Calibration and Spectral Analysis of Temperature and Velocity. J. Atmospheric Sci., 60, 2487–2495, doi:10.1175/1520-0469(2003)060<2487:TMWTCT>2.0.CO;2.
  • ——, ——, ——, ——, and R. Sharman, 2006: Measurements of Boundary Layer Profiles in an Urban Environment. J. Appl. Meteorol. Climatol., 45, 821–837, doi:10.1175/JAM2368.1.
  • Friedrich, K., J. K. Lundquist, M. Aitken, E. A. Kalina, and R. F. Marshall, 2012: Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations. Geophys. Res. Lett., 39, L03801, doi:10.1029/2011GL050413.
  • Gallacher, D., and G. More, 2014: Lidar Measurements and Visualisations of Turbulence and Wake Decay Length. EWEA 2014 http://www.sgurrenergy.com/wp/wp-content/uploads/2016/05/EWEA-2014-Poster-ID-175-Lidar-Measured-Wakes-B3.pdf (Accessed March 27, 2017).
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-Resolution Doppler Lidar for Boundary Layer and Cloud Research. J. Atmospheric Ocean. Technol., 18, 376–393, doi:10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.
  • Gunter, W. S., J. L. Schroeder, and B. D. Hirth, 2015: Validation of Dual-Doppler Wind Profiles with in situ Anemometry. J. Atmospheric Ocean. Technol., 32, 943–960, doi:10.1175/JTECH-D-14-00181.1.
  • Hand, M. M., D. A. Simms, L. J. Fingersh, D. W. Jager, J. R. Cotrell, S. Schreck, and S. M. Larwood, 2001: Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns - 29955.pdf. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy02osti/29955.pdf (Accessed March 30, 2017). - please check the link to the document -having trouble getting to the file
  • Hannah, R. L., and S. E. Reed, 1992: Strain Gage Users’ Handbook. Springer Science & Business Media, 506 pp.
  • Herges, T., D. C. Maniaci, D. Bossert, R. Schmitt, and B. Naughton, 2015: Preliminary Field Test of the Wind Turbine Wake Imaging System. 33rd Wind Energy Symposium, American Institute of Aeronautics and Astronautics https://arc.aiaa.org/doi/abs/10.2514/6.2015-0219 (Accessed March 27, 2017).
  • Herges, T. G., D. Bossert, R. Schmitt, M. Johnson, D. C. Maniaci, C. Glen, and B. Naughton, 2016: Field Demonstration of the Sandia Wake Imaging System Capabilities at the Scaled Wind Farm Technology Facility. 34th Wind Energy Symposium, American Institute of Aeronautics and Astronautics https://arc.aiaa.org/doi/abs/10.2514/6.2016-1524 (Accessed March 27, 2017).
  • ——, D. C. Maniaci, B. Naughton, K. Hansen, M. Sjoholm, N. Angelou, and T. Mikkelsen, 2017: Scanning Lidar Spatial Calibration and Alignment Method for Wind Turbine Wake Characterization. 35th Wind Energy Symposium, American Institute of Aeronautics and Astronautics https://arc.aiaa.org/doi/abs/10.2514/6.2017-0455 (Accessed March 27, 2017).
  • Hill, M., R. Calhoun, H. J. S. Fernando, A. Wieser, A. Dörnbrack, M. Weissmann, G. Mayr, and R. Newsom, 2010: Coplanar Doppler Lidar Retrieval of Rotors from T-REX. J. Atmospheric Sci., 67, 713–729, doi:10.1175/2009JAS3016.1.
  • Hills, R. G., D. C. Maniaci, and Naughton, 2015: V&V Framework. Sandia National Laboratories, Albuquerque, New Mexico, http://prod.sandia.gov/techlib/access-control.cgi/2015/157455.pdf (Accessed March 26, 2017).
  • Hirth, B. D., J. L. Schroeder, W. S. Gunter, and J. G. Guynes, 2012: Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars. J. Atmospheric Ocean. Technol., 29, 765–771, doi:10.1175/JTECH-D-12-00039.1.
  • ——, ——, ——, and ——, 2015: Coupling Doppler radar-derived wind maps with operational turbine data to document wind farm complex flows. Wind Energy, 18, 529–540, doi:10.1002/we.1701.
  • Hirth, B. D., J. L. Schroeder, and J. Guynes, 2017: “Diurnal Evolution of Wind Structure and Data Availability Measured by the DOE Prototype Radar System,” Journal of Physics: Conf. Series, 929, 1-9.
  • Hirth, B. D., J. L. Schroeder, J. G. Guynes, N. Nygaard, F. Brink, J. Gretlund, 2017: “A Dual-Doppler Radar System to Document Offshore Wind Plant Complex Flows,” Offshore Wind Energy, London, England.
  • Hirth B. D., J.L. Schroeder, Z. Irons, K. Walter, 2015 “Case Study: Dual-Doppler Measurements of a Wind Ramp Event at an Oklahoma Wind Plant,” Journal of Wind Energy, 19, 953-962.
  • Holstein, P., A. Raabe, R. Müller, M. Barth, D. Mackenzie, and E. Starke, 2004: Acoustic tomography on the basis of travel-time measurement. Meas. Sci. Technol., 15, 1420, doi:10.1088/0957-0233/15/7/026.
  • Hong, J., M. Toloui, L. P. Chamorro, M. Guala, K. Howard, S. Riley, J. Tucker, and F. Sotiropoulos, 2014: Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat. Commun., 5, 4216, doi:10.1038/ncomms5216.
  • Houchi, K., A. Stoffelen, G. J. Marseille, and J. De Kloe, 2010: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model. J. Geophys. Res. Atmospheres, 115, D22123, doi:10.1029/2009JD013196.
  • IEC 61400-11, 2012: International Standard 61400-11: Acoustic noise measurement techniques, Edition 3.0 – Part 11: Measurement of mechanical loads.
  • IEC 61400-12-1, 2005: Wind Turbines - Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines.
  • ——, 2017: International Standard 61400-12-1: Wind Energy Generation Systems – Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; Edition 2.0.
  • IEC 61400-12-2, 2013: International Standard 61400-12-2: Wind Energy Generation Systems – Part 12-2: Power Performance Measurements of Electricity Producing Wind Turbines Based on Nacelle Anemometry; Edition 1.0.
  • IEC 61400-13, 2015: International Standard 61400-13: Wind Turbines – Part 13: Measurement of Mechanical Loads.
  • IEC 61400-21, 2008: International Standard 61400-21: Wind Turbines – Part 21: Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines, Edition 2.0.
  • ISO/IEC Guide 98-3:2008, 2008: Uncertainty of Measurement -- Part 3: Guide to the Expression of Uncertainty in Measurement.
  • Kaimal, J. C., and J. A. Businger, 1963: A Continuous Wave Sonic Anemometer-Thermometer. J. Appl. Meteorol., 2, 156–164, doi:10.1175/1520-0450(1963)002<0156:ACWSAT>2.0.CO;2.
  • ——, and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Clim. Appl. Meteorol., 22, 863–880, doi:10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.
  • ——, J. C. Wyngaard, and D. A. Haugen, 1968: Deriving Power Spectra from a Three-Component Sonic Anemometer. J. Appl. Meteorol., 7, 827–837.
  • Karagali, I., A. Peña, M. Badger, and C. B. Hasager, 2014: Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy, 17, 123–140, doi:10.1002/we.1565.
  • Kim, H. G., and V. C. Patel, 2000: Test Of Turbulence Models For Wind Flow Over Terrain With Separation And Recirculation. Bound.-Layer Meteorol., 94, 5–21, doi:10.1023/A:1002450414410.
  • Klein, P., and Coauthors, 2015: LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment. Bull. Am. Meteorol. Soc., 96, 1743–1764, doi:10.1175/BAMS-D-13-00267.1.
  • Kleissl, J., J. Gomez, S.-H. Hong, J. M. H. Hendrickx, T. Rahn, and W. L. Defoor, 2008: Large Aperture Scintillometer Intercomparison Study. Bound.-Layer Meteorol., 128, 133–150, doi:10.1007/s10546-008-9274-1.
  • Kocer, G., N. Chokani, and R. Abhari, 2012: Wake Structure of a 2MW Wind Turbine Measured Using an Instrumented UAV. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics https://arc.aiaa.org/doi/abs/10.2514/6.2012-231 (Accessed March 27, 2017).
  • Kreuzer, M., 2006: Strain Measurement with Fiber Bragg Grating Sensors. http://www.ae.metu.edu.tr/seminar/strain-gage/FBG.pdf (Accessed March 26, 2017).
  • Kroonenberg, A. C. van den, S. Martin, F. Beyrich, and J. Bange, 2012: Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle. Bound.-Layer Meteorol., 142, 55–77, doi:10.1007/s10546-011-9662-9.
  • Kumar, V., G. Svensson, A. A. M. Holtslag, C. Meneveau, and M. B. Parlange, 2010: Impact of Surface Flux Formulations and Geostrophic Forcing on Large-Eddy Simulations of Diurnal Atmospheric Boundary Layer Flow. J. Appl. Meteorol. Climatol., 49, 1496–1516, doi:10.1175/2010JAMC2145.1.
  • Lagouarde, J.-P., J.-M. Bonnefond, Y. H. Kerr, K. J. McAneney, and M. Irvine, 2002: Integrated Sensible Heat Flux Measurements of a Two-Surface Composite Landscape using Scintillometry. Bound.-Layer Meteorol., 105, 5–35, doi:10.1023/A:1019631428921.
  • Lavision. 2017. https://www.lavision.de/en/download.php?id=317
  • LeMone, M. A., and Coauthors, 2000: Land-atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bulletin of the American Meteorological Society, 81, 757-779.
  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics? J. Atmospheric Ocean. Technol., 11, 661–673, doi:10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2.
  • Loescher, H. W., and Coauthors, 2005: Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers. Agric. For. Meteorol., 133, 119–139, doi:10.1016/j.agrformet.2005.08.009.
  • Lopes, A. S., and J. M. L. M. Palma, 2002: Large Eddy Simulation of the Flow Around the Askervein Hill. 3rd Theoretical Fluid Mechanics Meeting, American Institute of Aeronautics and Astronautics https://arc.aiaa.org/doi/abs/10.2514/6.2002-3085 (Accessed March 28, 2017).
  • ——, ——, and F. A. Castro, 2007: Simulation of the Askervein flow. Part 2: Large-eddy simulations. Bound.-Layer Meteorol., 125, 85–108, doi:10.1007/s10546-007-9195-4.
  • Lundquist, J. K., and L. Bariteau, 2015: Dissipation of Turbulence in the Wake of a Wind Turbine. Bound.-Layer Meteorol., 154, 229–241, doi:10.1007/s10546-014-9978-3.
  • Lundquist, J. K., and Coauthors, 2014: Lidar observations of interacting wind turbine wakes in an onshore wind farm. EWEA 2014 http://www.leosphere.com/wp-content/uploads/2014/03/Lundquist_Boquet_EWEA_2014_CWEX13_final.pdf (Accessed March 30, 2017).
  • Lundquist, J. K., M. J. Churchfield, S. Lee, and A. Clifton, 2015: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics. Atmos Meas Tech, 8, 907–920, doi:10.5194/amt-8-907-2015.
  • Lundquist, J. K., and Coauthors, 2017: Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign. Bull. Am. Meteorol. Soc., 98, 289–314, doi:10.1175/BAMS-D-15-00151.1.
  • Lundquist, J. K., K. K. DuVivier, D. Kaffine, and J. M. Tomaszewski, 2019: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat. Energy, 4, 26–34, doi:10.1038/s41560-018-0281-2.
  • Machefaux, E., G. C. Larsen, N. Troldborg, K. S. Hansen, N. Angelou, T. Mikkelsen, and J. Mann, 2016: Investigation of wake interaction using full-scale lidar measurements and large eddy simulation. Wind Energy, 19, 1535–1551, doi:10.1002/we.1936.
  • Magnusson, M., and A.-S. Smedman, 1994: Influence of Atmospheric Stability on Wind Turbine Wakes. Wind Eng., 18, 139–151.
  • Mann, J., and Coauthors, 2017: Complex terrain experiments in the New European Wind Atlas. Phil Trans R Soc A, 375, 20160101, doi:10.1098/rsta.2016.0101.
  • Marinov, P., and M. M. Rahman, 2005: Measuring Bearing Currents. Chalmers University of Technology, 146 pp. http://webfiles.portal.chalmers.se/et/MSc/Marinov&RahmanMSc.pdf (Accessed March 30, 2017).
  • May, P. T., K. P. Moran, and R. G. Strauch, 1989: The Accuracy of RASS Temperature Measurements. J. Appl. Meteorol., 28, 1329–1335, doi:10.1175/1520-0450(1989)028<1329:TAORTM>2.0.CO;2.
  • Mayor, S. D., and S. M. Spuler, 2004: Raman-shifted eye-safe aerosol lidar. Appl. Opt., 43, 3915–3924, doi:10.1364/AO.43.003915.
  • Mazzaro, L. J., D. Muñoz-Esparza, J. K. Lundquist, and R. R. Linn, 2017: Nested Mesoscale-to-LES Modeling of the Atmospheric Boundary Layer in the Presence of Under-Resolved Convective Structures. J. Adv. Model. Earth Syst., in review.
  • McCaffrey, K., and Coauthors, 2017: Identification of tower-wake distortions using sonic anemometer and lidar measurements. Atmos Meas Tech, 10, 393–407, doi:10.5194/amt-10-393-2017.
  • McKenzie, R. L., 1996: Measurement capabilities of planar Doppler velocimetry using pulsed lasers. Appl. Opt., 35, 948–964, doi:10.1364/AO.35.000948.
  • Meijninger, W. M. L., F. Beyrich, A. Lüdi, W. Kohsiek, and H. A. R. D. Bruin, 2006: Scintillometer-Based Turbulent Fluxes of Sensible and Latent Heat Over a Heterogeneous Land Surface – A Contribution to Litfass-2003. Bound.-Layer Meteorol., 121, 89–110, doi:10.1007/s10546-005-9022-8.
  • Mendoza, I., J. Hur, and S. Thao, 2015a: Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine - 63686.pdf. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy15osti/63686.pdf (Accessed March 30, 2017).
  • ——, ——, ——, and A. Curtis, 2015b: Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine - 63684.pdf. National Renewable Energy Laboratory, http://www.nrel.gov/docs/fy15osti/63684.pdf (Accessed March 30, 2017).
  • Menke, R., N. Vasiljević, K. S. Hansen, A. N. Hahmann, and J. Mann, 2018: Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain. Wind Energy Sci., 3, 681–691, doi:https://doi.org/10.5194/wes-3-681-2018.
  • ——, ——, J. Mann, and J. K. Lundquist, 2019: Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements. Atmospheric Chem. Phys., 19, 2713–2723, doi:https://doi.org/10.5194/acp-19-2713-2019.
  • Meyers, J. F., J. W. Lee, and R. J. Schwartz, 2001: Characterization of measurement error sources in Doppler global velocimetry. Meas. Sci. Technol., 12, 357, doi:10.1088/0957-0233/12/4/301.
  • Mikkelsen, T., and Coauthors, 2013: A spinner-integrated wind lidar for enhanced wind turbine control. Wind Energy, 16, 625–643, doi:10.1002/we.1564.
  • Mirocha, J. D., and B. Kosović, 2009: A Large-Eddy Simulation Study of the Influence of Subsidence on the Stably Stratified Atmospheric Boundary Layer. Bound.-Layer Meteorol., 134, 1–21, doi:10.1007/s10546-009-9449-4.
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst, 24, 163–187.
  • Mosedale, A. D., G. S. Elliott, C. D. Carter, and T. J. Beutner, 2000: Planar Doppler Velocimetry in a Large-Scale Facility. AIAA J., 38, 1010–1024, doi:10.2514/2.1085.
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models. Bound.-Layer Meteorol., 153, 409–440, doi:10.1007/s10546-014-9956-9.
  • Muschinski, A., R. G. Frehlich, and B. B. Balsley, 2004: Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J. Fluid Mech., 515, 319–351, doi:10.1017/S0022112004000412.
  • Nemes, A., T. Dasari, J. Hong, M. Guala, and F. Coletti, 2017: Snowflakes in the atmospheric surface layer: observation of particle–turbulence dynamics. J. Fluid Mech., 814, 592–613, doi:10.1017/jfm.2017.13.
  • Newman, J. F., and A. Clifton, 2017: An error reduction algorithm to improve lidar turbulence estimates for wind energy. Wind Energy Sci., 2, 77–95, doi:10.5194/wes-2-77-2017.
  • Newsom, R., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar. Bound.-Layer Meteorol., 127, 111–130, doi:10.1007/s10546-007-9243-0.
  • Niezrecki, C., P. Avitabile, C. Warren, P. Pingle, and M. Helfrick, 2010: A Review of Digital Image Correlation Applied to Structura Dynamics. Vol. 1253 of, American Institute of Physics Conference Series, 219–232 http://adsabs.harvard.edu/abs/2010AIPC.1253..219N (Accessed March 26, 2017).
  • NRG Systems. "NRG 40C Anemometer." Accessed [include full date accessed]. https://www.renewablenrgsystems.com/products/met-sensors/anemometers/detail/40c-anemometer.
  • Nygaard, N. G., F. E. Brink, J. S. Gretlund, B. Hirth, J. Schroeder, and J. Guynes. 2017: “Wake Measurements in an Offshore Wind Farm using Dual-Doppler Radars,” Wind Energy Science Conference, Technical University of Denmark, Lyngby, Denmark.
  • O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements. J. Atmospheric Ocean. Technol., 27, 1652–1664, doi:10.1175/2010JTECHA1455.1.
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface-Layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain under Near-Neutral Conditions. J. Atmospheric Sci., 53, 1029–1044.
  • OpenLidar. Undated. OpenLidar website. https://www.openlidar.net/
  • Ostashev, V. E., S. N. Vecherin, K. D. Wilson, A. Ziemann, and G. H. Goedecke, 2009: Recent progress in acoustic travel-time tomography of the atmospheric surface layer. Meteorol. Z., 125–133, doi:10.1127/0941-2948/2009/0364.
  • Pan, B., K. Qian, H. Xie, and A. Asundi, 2009: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol., 20, 62001, doi:10.1088/0957-0233/20/6/062001.
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric turbulence: models and methods for engineering applications. Wiley, 432 pp.
  • Pauscher, L., and Coauthors, 2016: An Inter-Comparison Study of Multi- and DBS Lidar Measurements in Complex Terrain. Remote Sens., 8, 782, doi:10.3390/rs8090782.
  • Pindado, S., J. Cubas, and F. Sorribes-Palmer, 2014: The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute. Sensors, 14, 21418–21452, doi:10.3390/s141121418.
  • Piper, M., and J. K. Lundquist, 2004: Surface layer turbulence measurements during a frontal passage. J. Atmospheric Sci., 61, 1768–1780.
  • Platis, A., and Coauthors, 2018: First in situ evidence of wakes in the far field behind offshore wind farms. Sci. Rep., 8, 2163, doi:10.1038/s41598-018-20389-y.
  • Pol, S. U., and B. J. Balakumar, 2013: Design considerations for large field particle image velocimetery (LF-PIV). Meas. Sci. Technol., 24, 25302, doi:10.1088/0957-0233/24/2/025302.
  • Pope, A., and W. H. Rae, 1984: Low-speed wind tunnel testing. Wiley, 558 pp.
  • Post, M. J., and R. E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Opt., 29, 4145–4158, doi:10.1364/AO.29.004145.
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer. Bull. Am. Meteorol. Soc., 83, 555–581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.
  • Raithby, G. D., G. D. Stubley, and P. A. Taylor, 1987: The Askervein hill project: A finite control volume prediction of three-dimensional flows over the hill. Bound.-Layer Meteorol., 39, 247–267, doi:10.1007/BF00116121.
  • Rajewski, D. A., and Coauthors, 2013: CROP WIND ENERGY EXPERIMENT (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm. Bull. Am. Meteorol. Soc., 94, 655–672.
  • ——, E. S. Takle, J. K. Lundquist, J. H. Prueger, R. L. Pfeiffer, J. L. Hatfield, K. K. Spoth, and R. K. Doorenbos, 2014: Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric. For. Meteorol., 194, 175–187, doi:10.1016/j.agrformet.2014.03.023.
  • ——, ——, J. H. Prueger, and R. K. Doorenbos, 2016: Toward understanding the physical link between turbines and microclimate impacts from in situ measurements in a large wind farm. J. Geophys. Res. Atmospheres, 2016JD025297, doi:10.1002/2016JD025297.
  • Rao, Y.-J., 1997: In-fibre Bragg grating sensors. Meas. Sci. Technol., 8, 355, doi:10.1088/0957-0233/8/4/002.
  • Reineman, B. D., L. Lenain, N. M. Statom, and W. K. Melville, 2013: Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers. J. Atmospheric Ocean. Technol., 30, 1295–1319, doi:10.1175/JTECH-D-12-00176.1.
  • Rhodes, M. E., and J. K. Lundquist, 2013: The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar. Bound.-Layer Meteorol., 149, 85–103, doi:10.1007/s10546-013-9834-x.
  • Rieker, G. B., and Coauthors, 2014: Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290–298, doi:10.1364/OPTICA.1.000290.
  • Roadman, J., and A. Huskey, 2015: Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy15osti/63681.pdf (Accessed March 30, 2017).
  • Sandia National Laboratories. "TTU Advanced Doppler Radar." Accessed [include date accessed]. http://energy.sandia.gov/energy/renewable-energy/wind-power/wind_plant_opt/ttu-advanced-doppler-radar/
  • Santos, R., and J. van Dam, 2015: Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy15osti/63679.pdf. (Accessed March 30, 2017).
  • Sathe, A., and J. Mann, 2013: A review of turbulence measurements using ground-based wind lidars. Atmospheric Meas. Tech., 6, 3147–3167, doi:10.5194/amt-6-3147-2013.
  • ——, ——, J. Gottschall, and M. S. Courtney, 2011: Can Wind Lidars Measure Turbulence? J. Atmospheric Ocean. Technol., 28, 853–868, doi:10.1175/JTECH-D-10-05004.1.
  • ——, ——, T. Barlas, W. A. A. M. Bierbooms, and G. J. W. van Bussel, 2013: Influence of atmospheric stability on wind turbine loads. Wind Energy, 16, 1013–1032, doi:10.1002/we.1528.
  • ——, ——, N. Vasiljevic, and G. Lea, 2015: A six-beam method to measure turbulence statistics using ground-based wind lidars. Atmos Meas Tech, 8, 729–740, doi:10.5194/amt-8-729-2015.
  • Scarano, F., S. Ghaemi, G. C. A. Caridi, J. Bosbach, U. Dierksheide, and A. Sciacchitano, 2015: On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp. Fluids, 56, 42, doi:10.1007/s00348-015-1909-7.
  • Schmid, P., and D. Niyogi, 2012: A Method for Estimating Planetary Boundary Layer Heights and Its Application over the ARM Southern Great Plains Site. J. Atmospheric Ocean. Technol., 29, 316–322, doi:10.1175/JTECH-D-11-00118.1.
  • Sengupta, M., and Coauthors, 2015: Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy15osti/63112.pdf. (Accessed March 28, 2017).
  • Siedersleben, S. K., and Coauthors, 2018: Micrometeorological impacts of offshore wind farms as seen in observations and simulations. Environ. Res. Lett., 13, 124012, doi:10.1088/1748-9326/aaea0b.
  • Simms, D. A., M. M. Hand, L. J. Fingersh, and D. W. Jager, 1999: Unsteady Aerodynamics Experiment Phases II–IV Test Configurations and Available Data Campaigns. National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/docs/fy99osti/25950.pdf. (Accessed March 30, 2017).
  • Shaw, W. J., L. K. Berg, J. Cline, C. Draxl, I. Djalalova, E. P. Grimit, J. K. Lundquist, M. Marquis, J. McCaa, J. Olson, C. Sivaraman, J. Sharp, J. M. Wilczak. Forthcoming. The Second Wind Forecast Improvement Project (WFIP 2): General Overview. Bulletin of the American Meteorological Society, in review.
  • Sjöholm, M., N. Angelou, P. Hansen, K. H. Hansen, T. Mikkelsen, S. Haga, J. A. Silgjerd, and N. Starsmore, 2013a: Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering. J. Atmospheric Ocean. Technol., 31, 930–937, doi:10.1175/JTECH-D-13-00010.1.
  • ——, A. T. Pedersen, N. Angelou, F. Foroughi Abari, T. Mikkelsen, M. Harris, C. Slinger, and S. Kapp, 2013b: Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar.
  • Smalikho, I., F. Köpp, and S. Rahm, 2005: Measurement of Atmospheric Turbulence by 2-μm Doppler Lidar. J. Atmospheric Ocean. Technol., 22, 1733–1747, doi:10.1175/JTECH1815.1.
  • Smalikho, I. N., and V. A. Banakh, 2013: Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing. Atmospheric Ocean. Opt., 26, 404–410, doi:10.1134/S102485601305014X.
  • ——, ——, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, 2013: Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake. J. Atmospheric Ocean. Technol., 30, 2554–2570, doi:10.1175/JTECH-D-12-00108.1.
  • Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos Meas Tech, 8, 1073–1087, doi:10.5194/amt-8-1073-2015.
  • Squire, L., R. Maltby, R. Keating, and A. Stanbrock, 1962: The Surface Oil Flow Technique. NATO.
  • St. Martin, C. M., J. K. Lundquist, A. Clifton, G. S. Poulos, and S. J. Schreck, 2016: Atmospheric turbulence affects wind turbine nacelle transfer functions. Wind Energy Sci. Discuss., 1–22, doi:10.5194/wes-2016-45.
  • Steeneveld, G. J., B. J. H. van de Wiel, and A. a. M. Holtslag, 2007: Diagnostic Equations for the Stable Boundary Layer Height: Evaluation and Dimensional Analysis. J. Appl. Meteorol. Climatol., 46, 212–225, doi:10.1175/JAM2454.1.
  • Strauch, R. G., V. E. Derr, and R. E. Cupp, 1971: Atmospheric water vapor measurement by Raman Lidar. Remote Sens. Environ., 2, 101–108, doi:10.1016/0034-4257(71)90083-6.
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer Science & Business Media, 688 pp.
  • Sumner, J., and C. Masson, 2006: Influence of Atmospheric Stability on Wind Turbine Power Performance Curves. J. Sol. Energy Eng., 128, 531–538, doi:10.1115/1.2347714.
  • Takle, E. S., D. A. Rajewski, J. K. Lundquist, W. A. G. Jr, and A. Sharma, 2014: Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX). J. Phys. Conf. Ser., 524, 12174, doi:10.1088/1742-6596/524/1/012174.
  • ——, ——, and S. L. Purdy, 2019: The Iowa Atmospheric Observatory: Revealing the Unique Boundary Layer Characteristics of a Wind Farm. Earth Interact., 23, 1–27, doi:10.1175/EI-D-17-0024.1.
  • Taylor, P. A., and H. W. Teunissen, 1987: The Askervein Hill project: Overview and background data. Bound.-Layer Meteorol., 39, 15–39, doi:10.1007/BF00121863.
  • Thomas, R. M., K. Lehmann, H. Nguyen, D. L. Jackson, D. Wolfe, and V. Ramanathan, 2012: Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system. Atmos Meas Tech, 5, 243–257, doi:10.5194/amt-5-243-2012.
  • Toloui, M., S. Riley, J. Hong, K. Howard, L. P. Chamorro, M. Guala, and J. Tucker, 2014: Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall. Exp. Fluids, 55, 1737, doi:10.1007/s00348-014-1737-1.
  • Tropea, C., and A. L. Yarin, 2007: Springer Handbook of Experimental Fluid Mechanics. Springer Science & Business Media, 1570 pp.
  • Undheim, O., H. I. Andersson, and E. Berge, 2006: Non-Linear, Microscale Modelling of the Flow Over Askervein Hill. Bound.-Layer Meteorol., 120, 477–495, doi:10.1007/s10546-006-9065-5.
  • US EPA, 2000: Meteorological Monitoring Guidance for Regulatory Modeling Applications. US EPA, Research Triangle Park, NC, https://www3.epa.gov/scram001/guidance/met/mmgrma.pdf (Accessed March 1, 2017).
  • Vanderwende, B. J., and J. K. Lundquist, 2012: The modification of wind turbine performance by statistically distinct atmospheric regimes. Environ. Res. Lett., 7, 34035.
  • Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and Simulating the Summertime Low-Level Jet in Central Iowa. Mon. Weather Rev., 143, 2319–2336, doi:10.1175/MWR-D-14-00325.1.
  • Vickers, D., and L. Mahrt, 2004: Evaluating Formulations of Stable Boundary Layer Height. J. Appl. Meteorol., 43, 1736–1749, doi:10.1175/JAM2160.1.
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 505 pp.
  • Ware, R., R. Carpenter, J. Güldner, J. Liljegren, T. Nehrkorn, F. Solheim, and F. Vandenberghe, 2003: A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Sci., 38, 8079, doi:10.1029/2002RS002856.
  • Ware, R., and Coauthors, 2013: Thermodynamic and liquid profiling during the 2010 Winter Olympics. Atmospheric Res., 132–133, 278–290, doi:10.1016/j.atmosres.2013.05.019.
  • Warner, T. T., 2010: Numerical Weather and Climate Prediction. Cambridge University Press, 550 pp.
  • ——, 2011: Quality Assurance in Atmospheric Modeling. Bull. Am. Meteorol. Soc., 92, 1601–1610, doi:10.1175/BAMS-D-11-00054.1.
  • Webster, J. G., and H. Eren, 2014: Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement. CRC Press, 1881 pp.
  • Weitkamp, C., ed., 2005: Lidar: range-resolved optical remote sensing of the atmosphere. Springer, New York, 455 pp.
  • Wharton, S., and J. K. Lundquist, 2012: Atmospheric stability affects wind turbine power collection. Environ. Res. Lett., 7, 14005, doi:10.1088/1748-9326/7/1/014005.
  • Whitmore, S. A., 2006: Frequency Response Model for Branched Pneumatic Sensing Systems. J. Aircr., 43, 1845–1853, doi:10.2514/1.20759.
  • Wilczak, J., and Coauthors, 2015: The Wind Forecast Improvement Project (WFIP): A Public–Private Partnership Addressing Wind Energy Forecast Needs. Bull. Am. Meteorol. Soc., 96, 1699–1718, doi:10.1175/BAMS-D-14-00107.1.
  • Wilczak, J. M., and Coauthors, 1995: Contamination of Wind Profiler Data by Migrating Birds: Characteristics of Corrupted Data and Potential Solutions. J. Atmospheric Ocean. Technol., 12, 449–467, doi:10.1175/1520-0426(1995)012<0449:COWPDB>2.0.CO;2.
  • Wilczak, J. M., and Coauthors. Forthcoming. The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign. Bulletin of the American Meteorological Society, in review.
  • Wildmann, N., M. Mauz, and J. Bange, 2013: Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA). Atmos Meas Tech, 6, 2101–2113, doi:10.5194/amt-6-2101-2013.
  • ——, S. Ravi, and J. Bange, 2014: Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA). Atmos Meas Tech, 7, 1027–1041, doi:10.5194/amt-7-1027-2014.
  • Wildmann, N., G. A. Rau, and J. Bange, 2015: Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft. Bound.-Layer Meteorol., 157, 345–373, doi:10.1007/s10546-015-0059-z.
  • Wildmann, N., N. Vasiljevic, and T. Gerz, 2018: Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup. Atmospheric Meas. Tech., 11, 3801–3814, doi:10.5194/amt-11-3801-2018.
  • Winstroth, J., L. Schoen, B. Ernst, and J. R. Seume, 2014: Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine. J. Phys. Conf. Ser., 524, 12064, doi:10.1088/1742-6596/524/1/012064.
  • Wolfe, D. E., and R. J. Lataitis, 2018: Boulder Atmospheric Observatory: 1977–2016: The End of an Era and Lessons Learned. Bull. Am. Meteorol. Soc., 99, 1345–1358, doi:10.1175/BAMS-D-17-0054.1.
  • Xie, Y., M. Sengupta, and J. Dudhia, 2016: A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation. Sol. Energy, 135, 435–445, doi:10.1016/j.solener.2016.06.003.
  • Yazicioglu, H., N. Angelou, T. Mikkelsen, and J.-J. Trujillo, 2016: Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners. J. Phys. Conf. Ser., 753, doi:http://dx.doi.org/10.1088/1742-6596/753/3/032032.
  • Zeweldi, D. A., M. Gebremichael, J. Wang, T. Sammis, J. Kleissl, and D. Miller, 2010: Intercomparison of Sensible Heat Flux from Large Aperture Scintillometer and Eddy Covariance Methods: Field Experiment over a Homogeneous Semi-arid Region. Bound.-Layer Meteorol., 135, 151–159, doi:10.1007/s10546-009-9460-9.
  • Zhou, B., and F. K. Chow, 2011: Large-Eddy Simulation of the Stable Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling. J. Atmospheric Sci., 68, 2142–2155, doi:10.1175/2011JAS3693.1.
  • Zilliac, G. G., 1989: Calibration of Seven-Hole Pressure Probes for Use in Fluid Flows with Large Angularity. NASA Ames Research Center, Moffett Field, CA, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.605.8500&rep=rep1&type=pdf (Accessed March 30, 2017).