DESIGN FOR EXTREME CONDITIONS

COLUMBIA POWER TECHNOLOGIES

PUKHA LENE-BLUHM
MAY 2014

COLUMBIA POWER TECHNOLOGIES

power from the next wave
COLUMBIA POWER TECHNOLOGIES

• Offices
 • engineering – Corvallis, OR
 • administrative – Charlottseville, VA

• Partners, supply chain
 • federal and state
 • international supply chain

• Mission
 • commercializing utility scale WEC technology

• Commercialization
 • cost viability
 • low impact
 • survivability
STINGRAY v3.2

- Floating WEC
- 3 bodies, 8 DOFs
 - relative pitching
- FRP structure, with some steel components
- 2 independent DDR PMG generators
 - 7.8 m air gap diameter
STINGRAY v3.2 OPERATION
PRODUCT DEVELOPMENT

1:50 Scale Unit Test (v3.0) 1:33 Scale Unit Test (v3.0) 1:15th Scale Unit Test (v3.0) 5 x 1:33 Scale Units Wave Farm Test (v3.1) Intermediate Scale Unit Sea Trial (v3.1) Design Optimization Complete (v3.2) Verification Test Small Scale (v3.2)

Government Funding Key: U.S. Dept of Navy U.S. Dept of Energy

Test Location: Oregon State Univ. Test Facilities Puget Sound, Seattle, USA

For sake of presentation, project milestones show starting point only.
SeaRAY v3.1 – Intermediate Scale

• 13 months in Puget Sound
• Scaled seas
 • WEC scaled to match
• Design
 • large uncertainty and moderate capex → large SF
• Extreme conditions
 • Hm0 up to 11 m
• Data for model validation
 • structural strain
 • end stop and mooring loads
PROJECT LIGHTNING – DESIGN OPTIMIZATION

- New v3.2 design features
 - dual spars
 - aft float shifted back
 - compliant single-point mooring system

- Benefits
 - no range limits or end-stops
 - reduced loading (no end-stop strikes)
 - improved survivability
 - shallow draft transport mode
 - 30%+ performance improvement
 - weathervaning allows head seas

Extreme Survival Mode

Transport Mode
33 LIGHTNING v3.2 – SMALL SCALE TANK TEST

- Test setup
 - 1:33 scale model with PMCs
 - instrumented for waves, WEC position, mooring loads
 - data for model validation
- Wave conditions
 - regular waves up to H=5m
 - irregular seas up to Hm0=14m
- WEC configuration
 - PTO damping
 - float position
 - ballast modifications
- Response
 - position, acceleration
 - mooring loads
STINGRAY v3.2 – DESIGN AND DEMONSTRATION

• Utility scale prototype WEC
 • 25.4 m draft
 • 1,130 ton displacement
 • 500 kW rating

• Demonstration at WETS in Kaneohe Bay, Hawaii

• Risk reduction
 • prototype certification
 • DNV-GL Renewables Certification
 • failure modes, effects and criticality analysis (FMECA)
 • land based component testing
 • extensive modeling → loading for system/component
 design/analysis

Privileged & Confidential – Do not distribute without permission of CPT
PROTOTYPE CERTIFICATION – DNV-GL RC

• Review of design basis
 • metocean conditions
 • WEC modes of operation
 • design principles and applicable standards
 • no established set of standards specific to WEC technology
 • methodology for load and structural analysis
• Prototype design assessment
 • control and safety system
 • load and response assumptions
 • structural design and analysis
• Surveillance
 • fabrication, transport and installation, commissioning
• Prototype certificate
CRITICAL COMPONENT TESTING

- De-risk critical components before going to sea
- LandRAY test at US DOE NREL NWTC 5 MW dynamometer
 - application of torque and non-torque loads to PTO
 - demonstrate and characterize generator mechanical design
 - confirm water-tight integrity
 - confirm supervisory control and data collection (SCADA)
MODELING AND DESIGN

• Design load cases
 • extreme environmental conditions
 • WEC modes of operation and faults
 • abnormal events
• Numerical modeling
 • set up, validate
 • quality control, post processing
 • loads and response estimates
• Design
 • structural analysis
 • component design
MODELLING/ANALYSIS ISSUES AND NEEDS

- Large, steep waves
- Large amplitude motions
- PTO controls
- Failures and faults
- Slapping, slamming loads
- Assessment, inclusion of viscous drag
- Pressure distribution over hull (time domain)
- Multi-body hydrodynamic interactions
- All relevant loads coupled, non-linear, time domain
- Accurate! Fast! Inexpensive!

- Which instances, from which DLCs, are critical to each failure mode?