

Open Energy Data Initiative Web Portal
for

Solar Integration
(OEDI SI)

Users Guide

1

Table of Contents

A. Setting up OEDI SI Web Platform ... 2
B. Setting Up Docker/Podman Environment... 3

a. Containers - An Introduction ... 3
b. Installing Docker on your Workstation ... 3

i. Installing Docker on Ubuntu .. 3
ii. Installing Docker on Windows ... 3
iii. Installing Docker Desktop on Mac ... 6

c. Installing Podman on your Workstation .. 8

i. Installing Podman on Ubuntu .. 8
ii. Installing Podman on Windows ... 8

C. OEDI SI Single Container .. 15
Running Directly Using Docker/Podman .. 16

UIRuntime ... 16
UIServer ... 16
Networking .. 16
Run the Container .. 16
Stop the Container ... 16
Loading the webpage ... 17
Examples ... 17
Troubleshooting ... 17

Conflict, container name already in use .. 17

Getting system_runner ... 18

2

A. Setting up OEDI SI Web Platform
Before a user can run the publicly available algorithms and data on OEDI SI Web Platform, the user
needs to setup a few environments on their local workstations.

OEDI SI Cloud Server hosts the main functions of OEDI SI Platform through the landing page at
here. OESI AI Platform provides reference algorithms to facilitate system integration of distributed
solar generation with high deployment along with composite input data sets as references and new
algorithms verifications.

The webpages that are served by the OEDI SI Cloud servers can be accessed at this address. OEDI
SI Instructions tab provides detailed instructions to be able to install and run all the components
required for OEDI SI simulations. These components are shown in Figure 1:

1. OEDI SI UI Server Docker container
2. OEDI SI Runtime

a. More details can be found at this github page.
b. The users need to download these at least once. Downloading these containers

initially will take some time.
c. However, as updates are made to these, the update installations will be

incremental.
3. The user will have to install Docker Desktop on the user’s workstation (one time process).

a. A docker container is a standard unit of software that packages up code and all its
dependencies, so the application runs quickly and reliably from one computing
environment to another.

Figure 1: High Level OEDI SI Architecture.

https://openei.org/wiki/OEDI-SI/Overview
https://openei.org/wiki/OEDI-SI/Overview
https://github.com/openEDI/oedi-si-single-container/blob/main/docs/edit_scenario_uiruntime_uiserver_without_cli.md

3

B. Setting Up Docker/Podman Environment

a. Containers - An Introduction

The use cases and their scenarios that OEDI SI makes available to public are exported as single docker
image, referred to as UIRuntime Container in reference documents for OEDI SI. UIRuntime Container can
simulate the scenarios on OEDI SI by running the image that scenario mimicked initially, thus,
reproducing the results that are exactly the same as the original simulation run.

A container is a standard unit of software that packages up code and all its dependencies, so the
application runs quickly and reliably from one computing environment to another. This makes it easy to
replicate results of a scenario on many different systems without having to load all the different
dependencies that each component may require.

The scenarios that OEDI SI have created have been exported as docker/podman images. Docker/Podman
can load these images into containers which then simulate the scenario that has been created. Users can
load and run these docker images to replicate the scenarios that have been created.

b. Installing Docker on your Workstation

i. Installing Docker on Ubuntu

To install docker on a linux environment, firstly update the linux package manager and install
dependencies to allow the package manager to install them over https:
$ sudo apt-get update
$ sudo apt-get install ca-certificates curl gnupg lsb-release

Then add docker’s GPG keys and set up the repository with the commands:
$ sudo mkdir -p /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o
/etc/apt/keyrings/docker.gpg

Finally update the package index and install the latest version of docker:
$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

See https://docs.docker.com/engine/install/ for more detail and installation instructions for other distros
in the “Installation per distro” entry on the left hand tab.

ii. Installing Docker on Windows

If you are running a windows machine, you will need to install docker desktop, which will emulate an
environment for you to run docker containers in. Below is a detailed guide for the installation process:

1. Go to the docker website: https://docs.docker.com/desktop/install/windows-install/

https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/install/windows-install/

4

2. Click on the button to download the installer and start installation:

3. Installation complete:

4. Search for docker desktop and open it:

5

5. Read and accept the agreement:

6. Proceed with account registration or continue without signing in:

7. Start using Docker Desktop:

6

iii. Installing Docker Desktop on Mac

Installation link -- https://docs.docker.com/desktop/install/mac-install/

1. Choose the right version for your Mac

2. Check system requirements
Check the system requirements based on the chip type

https://docs.docker.com/desktop/install/mac-install/

7

3. Install and run Docker Desktop on Mac
Two ways: Install interactively, or install from the command line

1) Download the installer using the download buttons

2) Double-click Docker.dmg to open the installer, then drag the Docker icon to
the Applications folder. By default, Docker Desktop is installed
at /Applications/Docker.app.

 The installation process.

3) Double-click Docker.app in the Applications folder to start Docker.

4) The Docker menu displays the Docker Subscription Service Agreement.
5) Select Accept to continue.
6) From the installation window, select either:

• Use recommended settings (Requires password). This lets Docker Desktop
automatically set the necessary configuration settings.

• Use advanced settings. You can then set the location of the Docker CLI tools either
in the system or user directory, enable the default Docker socket, and enable

8

privileged port mapping. See Settings, for more information and how to set the
location of the Docker CLI tools.

7) Select Finish. If you have applied any of the above configurations that require a
password in step 6, enter your password to confirm your choice.

c. Installing Podman on your Workstation

i. Installing Podman on Ubuntu

sudo apt-get -y install podman

ii. Installing Podman on Windows

For latest and complete documentation refer to
https://github.com/containers/podman/blob/main/docs/tutorials/podman-for-windows.md

Podman for Windows

While “containers are Linux,” Podman also runs on Mac and Windows, where it provides a
native CLI and embeds a guest Linux system to launch your containers. This guest is
referred to as a Podman machine and is managed with the podman machine command. On
Windows, each Podman machine is backed by a virtualized Windows Subsystem for Linux
(WSLv2) distribution. The podman command can be run directly from your Windows
PowerShell (or CMD) prompt, where it remotely communicates with the podman service
running in the WSL environment. Alternatively, you can access Podman directly from the
WSL instance if you prefer a Linux prompt and Linux tooling. In addition to command-line
access, Podman also listens for Docker API clients, supporting direct usage of Docker-based
tools and programmatic access from your language of choice.

Prerequisites

Since Podman uses WSL, you need a recent release of Windows 10 or Windows 11. On x64,
WSL requires build 18362 or later, and 19041 or later is required for arm64 systems.
Internally, WSL uses virtualization, so your system must support and have hardware
virtualization enabled. If you are running Windows on a VM, you must have a VM that
supports nested virtualization.

It is also recommended to install the modern “Windows Terminal,” which provides a
superior user experience to the standard PowerShell and CMD prompts, as well as a WSL
prompt, should you want it.

You can install it by searching the Windows Store or by running the following winget
command:

winget install Microsoft.WindowsTerminal

https://docs.docker.com/desktop/settings/mac/#advanced
https://github.com/containers/podman/blob/main/docs/tutorials/podman-for-windows.md

9

Installing Podman

Installing the Windows Podman client begins by downloading the Podman Windows
installer. The Windows installer is built with each Podman release and can be downloaded
from the official GitHub release page. Be sure to download a 4.1 or later release for the
capabilities discussed in this guide.

Installing Podman 4.1.0

Installing Podman 4.1.0

Once downloaded, simply run the EXE file, and relaunch a new terminal. After this point,
podman.exe will be present on your PATH, and you will be able to run the podman machine
init command to create your first machine.

PS C:\Users\User> podman machine init

Automatic WSL Installation

If WSL has not been installed on your system, the first machine init command will prompt a
dialog to begin an automated install. If accepted, this process will install the necessary
Windows components, restart the system, and after login, relaunch the machine creation
process in a terminal window. Be sure to wait a minute or two for the relaunch to occur, as
Windows has a delay before executing startup items. Alternatively, you can decline
automatic installation and install WSL manually. However, this will require additional
download and setup time.

Machine Init Process

After WSL is installed, the init command will install a minimal installation of Fedora,
customizing it to run podman.

PS C:\Users\User> podman machine init
Extracting compressed file
Importing operating system into WSL (this may take 5+ minutes on a new WSL in
stall)...
Installing packages (this will take a while)...
Complete!
Configuring system...
Generating public/private ed25519 key pair.
Your identification has been saved in podman-machine-default
Your public key has been saved in podman-machine-default.pub
The key fingerprint is:
SHA256:RGTGg2Q/LX7ijN+mzu8+BzcS3cEWP6Hir6pYllJtceA root@WINPC
Machine init complete
To start your machine run:

 podman machine start

https://github.com/containers/podman/releases

10

Starting Machine

After the machine init process completes, it can then be started and stopped as desired:

PS C:\Users\User> podman machine start

Starting machine "podman-machine-default"

This machine is currently configured in rootless mode. If your containers
require root permissions (e.g. ports < 1024), or if you run into compatibilit
y
issues with non-podman clients, you can switch using the following command:

 podman machine set --rootful

API forwarding listening on: npipe:////./pipe/docker_engine

Docker API clients default to this address. You do not need to set DOCKER_HOS
T.
Machine "podman-machine-default" started successfully

First Podman Command

From this point on, podman commands operate similarly to how they would on Linux.

For a quick working example with a small image, you can run the Linux date command on
PowerShell.

PS C:\Users\User> podman run ubi8-micro date
Thu May 5 21:56:42 UTC 2022

Port Forwarding

Port forwarding also works as expected; ports will be bound against localhost (127.0.0.1).
Note: When running as rootless (the default), you must use a port greater than 1023. See
the Rootful and Rootless section for more details.

To launch httpd, you can run:

PS C:\Users\User> podman run --rm -d -p 8080:80 --name httpd docker.io/librar
y/httpd
f708641300564a6caf90c145e64cd852e76f77f6a41699478bb83a162dceada9

A curl command against localhost on the PowerShell prompt will return a successful HTTP
response:

PS C:\Users\User> curl http://localhost:8080/ -UseBasicParsing

StatusCode : 200

11

StatusDescription : OK
Content : <html><body><h1>It works!</h1></body></html>

As with Linux, to stop, run:

podman stop httpd

Using API Forwarding

API forwarding allows Docker API tools and clients to use podman as if it was Docker.
Provided there is no other service listening on the Docker API pipe; no special settings will
be required.

PS C:\Users\User> .\docker.exe run -it fedora echo "Hello Podman!"
Hello Podman!

Otherwise, after starting the machine, you will be notified of an environment variable you
can set for tools to point to podman. Alternatively, you can shut down both the conflicting
service and podman, then finally run podman machine start to restart, which should grab
the Docker API address.

Another process was listening on the default Docker API pipe address.
You can still connect Docker API clients by setting DOCKER HOST using the
following PowerShell command in your terminal session:

 $Env:DOCKER_HOST = 'npipe:////./pipe/podman-machine-default'

Or in a classic CMD prompt:

 set DOCKER_HOST=npipe:////./pipe/podman-machine-default

Alternatively, terminate the other process and restart podman machine.
Machine "podman-machine-default" started successfully

PS C:\Users\User> $Env:DOCKER_HOST = 'npipe:////./pipe/podman-machine-default
'
PS C:\Users\User>.\docker.exe version --format '{{(index .Server.Components 0
).Name}}'
Podman Engine

Rootful & Rootless

On the embedded WSL Linux distro, podman can either be run under the root user (rootful)
or a non-privileged user (rootless). For behavioral consistency with Podman on Linux,
rootless is the default. Note: Rootful and Rootless containers are distinct and isolated from
one another. Podman commands against one (e.g., podman ps) will not represent
results/state for the other.

12

While most containers run fine in a rootless setting, you may find a case where the
container only functions with root privileges. If this is the case, you can switch the machine
to rootful by stopping it and using the set command:

podman machine stop
podman machine set --rootful

To restore rootless execution, set rootful to false:

podman machine stop
podman machine set --rootful=false

Another case in which you may wish to use rootful execution is binding a port less than
1024. However, future versions of podman will likely drop this to a lower number to
improve compatibility with defaults on system port services (such as MySQL)

Volume Mounting

New in Podman v4.1 is the ability to perform volume mounts from Windows paths into a
Linux container. This supports several notation schemes, including:

Windows Style Paths:

podman run --rm -v c:\Users\User\myfolder:/myfolder ubi8-micro ls /myfolder

Unixy Windows Paths:

podman run --rm -v /c/Users/User/myfolder:/myfolder ubi8-micro ls /myfolder

Linux paths local to the WSL filesystem:

podman run --rm -v /var/myfolder:/myfolder ubi-micro ls /myfolder

All of the above conventions work, whether running on a Windows prompt or the WSL
Linux shell. Although when using Windows paths on Linux, appropriately quote or escape
the Windows path portion of the argument.

Listing Podman Machine(s)

To list the available podman machine instances and their current resource usage, use the
podman machine ls command:

PS C:\Users\User> podman machine ls

NAME VM TYPE CREATED LAST UP CPUS
MEMORY DISK SIZE
podman-machine-default wsl 2 hours ago Currently running 4
331.1MB 768MB

13

Since WSL shares the same virtual machine and Linux kernel across multiple distributions,
the CPU and Memory values represent the total resources shared across running systems.
The opposite applies to the Disk value. It is independent and represents the amount of
storage for each individual distribution.

Accessing the Podman Linux Environment

While using the podman.exe client on the Windows environment provides a seamless
native experience supporting the usage of local desktop tools and APIs, there are a few
scenarios in which you may wish to access the Linux environment:

Updating to the latest stable packages on the embedded Fedora instance

Using Linux development tools directly

Using a workflow that relies on EXT4 filesystem performance or behavior semantics

There are three mechanisms to access the embedded WSL distribution: 1. SSH using podman
machine ssh 2. WSL command on the Windows PowerShell prompt 3. Windows Terminal
Integration

Using SSH

SSH access provides a similar experience as Podman on Mac. It immediately drops you into
the appropriate user based on your machine’s rootful/rootless configuration (root in the
former, ‘user’ in the latter). The –username option can be used to override with a specific
user.

An example task using SSH is updating your Linux environment to pull down the latest OS
bugfixes:

podman machine ssh sudo dnf upgrade -y

Using the WSL Command

The wsl command provides direct access to the Linux system but enters the shell as root
first. This is due to design limitations of WSL, where running systemd (Linux’s system
services) requires the usage of a privileged process namespace.

Unless you have no other distributions of WSL installed, it’s recommended to use the -d
option with the name of your podman machine (podman-machine-default is the default)

PS C:\Users\User> wsl -d podman-machine-default

You will be automatically entered into a nested process namespace where systemd is
running. If you need to access the parent namespace, hit ctrl-d or type exit. This also
means to log out, you need to exit twice.

[root@WINPC /]# podman --version
podman version 4.1.0

14

To access commands as the non-privileged user (rootless podman), you must first type su
user. Alternatively, you can prefix the wsl command to use the special enterns:

wsl -d podman-machine-default enterns su user
[user@WINPC /]$ id
uid=1000(user) gid=1000(user) groups=1000(user),10(wheel)

Likewise, running commands as root without entering a prompt should also be prefixed
with enterns.

wsl -d podman-machine-default enterns systemctl status

Accessing the WSL instance as a specific user using wsl -u or using inline commands
without enterns is not recommended since commands will execute against the incorrect
namespace.

Using Windows Terminal Integration

Entering WSL as root is a 2-click operation. Simply click the drop-down tag, and pick
‘podman-machine-default,’ where you will be entered directly as root.

Using WSL in Windows Terminal

Using WSL in Windows Terminal

As before, to switch to a non-privileged user for rootless podman commands, type su user.

[root@WINPC /]# su user
[user@WINPC /]$ podman info --format '{{.Store.RunRoot}}'
/run/user/1000/containers

Stopping a Podman Machine

To stop a running podman machine, use the podman machine stop command:

PS C:\Users\User> podman machine stop
Machine "podman-machine-default" stopped successfully

Removing a Podman Machine

To remove a machine, use the podman machine rm command:

PS C:\Users\User> podman machine rm

The following files will be deleted:

C:\Users\User\.ssh\podman-machine-default
C:\Users\User\.ssh\podman-machine-default.pub
C:\Users\User\.local\share\containers\podman\machine\wsl\podman-machine-defau
lt_fedora-35-x86_64.tar
C:\Users\User\.config\containers\podman\machine\wsl\podman-machine-default.js

15

on
C:\Users\User\.local\share\containers\podman\machine\wsl\wsldist\podman-machi
ne-default

Are you sure you want to continue? [y/N] y

Troubleshooting

Recovering from a failed auto-installation of WSL

If auto-install fails and retrying is unsuccessful, you can attempt to reset your WSL system
state and perform a manual WSL installation using the wsl --install command. To do so,
perform the following steps:

Launch PowerShell as administrator

Start-Process powershell -Verb RunAs

Disable WSL Features

dism.exe /online /disable-feature /featurename:Microsoft-Windows-Subsystem-Li
nux /norestart
dism.exe /online /disable-feature /featurename:VirtualMachinePlatform /norest
art

Reboot

Run manual WSL install

wsl --install

Continue with podman machine init

Install Certificate Authority

Instructions for installing a CA certificate can be found here.

C. OEDI SI Single Container
For latest and complete documentation refer to https://github.com/openEDI/oedi-si-single-
container/tree/main/docs.

file:///C:/Users/ryang/Downloads/podman-install-certificate-authority.md
https://github.com/openEDI/oedi-si-single-container/tree/main/docs
https://github.com/openEDI/oedi-si-single-container/tree/main/docs

16

Running Directly Using Docker/Podman
Single container consists of build, runtime and orchestration tools. If the user is interested in only
the orchestration portion, this can be accomplished without using the CLI by directly interacting
with Docker/Podman. If you are using Podman instead of Docker, replace all docker commands
with podman commands i.e. instead of docker pull use podman pull

UIRuntime

The UIRuntime images are available here

You would need to run the following command to get the latest version of the image,

docker pull openenergydatainitiative/uiruntime:latest

UIServer

The UIServer images are available here

docker pull openenergydatainitiative/uiserver:latest

Networking

Containers provide security through namespace isolation. We create a user defined bridge network
for different modes (rootful/rootless) of Docker/Podman to work without issues. Here we are
creating a subnet at the private IP space 172.20.0.0/24 i.e. 172.20.0.0 - 172.20.0.255. This allows
us to assign the network and IP to the containers during runtime.

docker network create --gateway 172.20.0.1 --subnet 172.20.0.0/24
oedisi_local_network

P.S. You will need to do this only once.

Run the Container

uiruntime

docker run --rm --name=uiruntime --net=oedisi_local_network --ip=172.20.0.2 -
p 12500:12500 -p 8888:8888 openenergydatainitiative/uiruntime:latest

uiserver

docker run --rm --name=uiserver --net=oedisi_local_network --ip=172.20.0.3 -p
8080:80 -p 8088:8088 openenergydatainitiative/uiserver:latest

Stop the Container

uiruntime

docker stop -t=0 uiruntime

https://hub.docker.com/r/openenergydatainitiative/uiruntime
https://hub.docker.com/r/openenergydatainitiative/uiserver

17

uiserver

docker stop -t=0 uiserver

Loading the webpage

Open your browser and go to the following address,

For edit scenario,

localhost:8080

For analysis (viewing logs and visualization). This page can also be reached by clicking the
“Dashboard” button on localhost:8080.

localhost:8080/analysis

If localhost does not resolve as expected, then replace it with 127.0.0.1

The analysis page comes with an interactive wiring diagram (flow chart on the left side of the
screen). Each block in the wiring diagram is clickable. The context of the click is dependent on the
“View Type” selection on the right panel i.e. log or plot. When the view type selection is log, a click
event on the wiring diagram block will display that federates log output. The plot event context is
available only for the rightmost recorder federates i.e. federates with the naming convention
"recorder_*".

Examples

You can find sample configurations at the following folder,

examples/edit_scenario/

Troubleshooting

Conflict, container name already in use

This implies that a previously run container is either still running or stopped but not removed. The
following command will list running containers,

docker ps

If uiruntime and/or uiserver is in the list, then you can use,

docker stop -t=0 uiruntime
docker stop -t=0 uiserver

The ps command with -a flag will list all containers, even the stopped ones.

docker ps -a

If uiruntime and/or uiserver is in the list, then you can use,

18

docker container rm uiruntime
docker container rm uiserver

Getting system_runner

http://127.0.0.1:12500/get_system_runner?uuid=<uuid>

