Solar and Wind Energy
Resource Assessment (SWERA)

High Resolution Solar Radiation Assessment for Ethiopia

Final country report prepared by

Christoph Schillings1
Richard Meyer2
Franz Trieb1

1 Deutsches Zentrum für Luft- und Raumfahrt, DLR-Stuttgart, Institut für Technische Thermodynamik, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

2 Deutsches Zentrum für Luft- und Raumfahrt, DLR-Oberpfaffenhofen, Institut für Physik der Atmosphäre, D-82234 Weßling, Germany

submitted to UNEP / GEF
October 2004
Content

1. Method description (satellite data, GHI-method, DNI-method)
2. Model output (GHI, DNI)
3. Comparison with ground measurements (if available)
4. References

Notice

This report was prepared as an account of work within the SWERA project funded by GEF / UNEP. The results presented here were produced by state-of-the-art methods with best-known data. The DLR (Deutsches Zentrum fuer Luft- und Raumfahrt e.V.) does not make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the DLR.

This report is electronically available at http://swera.unep.net

Contact the responsible author:
Christoph Schillings
DLR - Deutsches Zentrum für Luft- und Raumfahrt, e.V.
Pfaffenwaldring 38-40
D - 70569 Stuttgart

tel ++49(0)711/6862-784
fax ++49(0)711/6862-783
mail christoph.schillings@dlr.de
www http://www.dlr.de/system
1 Method description

Satellite Data

The high resolution solar radiation assessment is based on data of the geostationary satellite Meteosat. Due to the location of the participating SWERA countries, data of Meteosat 7 (M-7) for the years 2000, 2001 and 2002 (for Ghana, Kenya and Ethiopia) and data of Meteosat 5 (M-5) for the years 2000, 2002 and 2003 (for Bangladesh, West-China, Nepal and Sri Lanka) are used. M-5 has its position at 0° latitude and 63° East longitude, M-7 is located at an orbit at 0° latitude and 0° longitude. Figure 1 gives the field of view of both satellites which scans the specific area every 30 minutes with a spatial resolution of 5x5 km².

![Figure 1: The solar irradiance data is derived from Meteosat a 0° (red circle) and at 63° East (orange circle). The brightened area marks the quantitatively analyzable region. (Meyer et al., 2004).](image)

Data of the visible (VIS) channel, which gives the reflection of the system earth/atmosphere (including clouds) and data of the infrared (IR) channel, which represents the temperature of the surface and atmosphere, are used for gathering information about the clouds. Both are used in a different way to assess the global horizontal (GHI) and the direct normal radiation (DNI) at ground. Additionally, data of the most important atmospheric components that attenuate the radiation, namely ozone, water vapor and aerosols, are used to take into account the clear-sky conditions of the atmosphere. In the following, the method for deriving DNI based on the DLR method and the method for deriving GHI, based on a combined method of DLR and SUNY, is described.

Method for Direct Normal Radiation (DNI)

The calculation of DNI bases on the clear-sky model of Bird and Hulstrom (1981) as described in Iqbal (1983) which was modified by Schillings et al. (2004) for taking into account cloudy conditions with

\[
DNI = 0.9751 \cdot I_0 \cdot \tau_R \cdot \tau_{Gas} \cdot \tau_{Ozon} \cdot \tau_{WV} \cdot \tau_{Ae} \cdot \tau_{vis} \cdot \tau_{ir}
\]

Equation (1)

Each atmospheric transmittance coefficient \(\tau \) is calculated separately using atmospheric input data. All equations for calculating the clear-sky transmittances are described in Iqbal (1983).
Transmittance for Rayleigh scattering

\[
\tau_R = \exp\left[-0.0903 m_a^{0.84} \left(1.0 + am_p - am_p^{1.01}\right)\right]
\]
(2)

Transmittance for equally distributed gas (mainly O\(_2\) and CO\(_2\))

\[
\tau_{Gas} = \exp\left(-0.0127 am_p^{0.26}\right)
\]
(3)

Transmittance for ozone

\[
\tau_{Ozon} = 1 - \alpha_{Ozon}
\]

\[
\alpha_{Ozon} = 0.1611 \chi\left(1.0 + 139.48 \chi\right)^{-0.3035} - 0.002715 \chi\left(1.0 + 0.044 \chi + 0.0003 \chi^2\right)^{-1}
\]
(4)

\[
\chi = u \cdot am,\text{ with the vertical ozone layer thickness } u \text{ in cm}\,[\text{NTP}] \text{ and the airmass } am.
\]

Transmittance for water vapor

\[
\tau_{WV} = 1 - \alpha_{WV}
\]

\[
\alpha_{WV} = 2.4959 \gamma \left[1.0 + 79.034 \gamma^{0.6828} + 6.385 \gamma\right]^{-1}
\]
(5)

\[
\gamma = w \cdot am, \text{ with the pressure-corrected relative optical path length of precipitable water } w \text{ in cm}\,[\text{NTP}].
\]

Transmittance for aerosols

\[
\tau_{Ae} = \exp\left[-k_a^{0.873} \left(1.0 + k_a - k_a^{0.7088}\right) am_p^{0.9108}\right]
\]
(6)

\[
k_a = 0.2758 k_{a,\lambda=0.38,\text{cum}} + 0.35 k_{a,\lambda=0.5,\text{cum}}
\]
(7)

with the aerosol optical thickness \(k_{a,\lambda}\) at the wavelength 0.38 \(\mu\)m und 0.5 \(\mu\)m.

Transmittance for clouds

using the visible Cloud-Index \(CI_vis\)

\[
\tau_{vis} = e^{-\left(CI_vis \cdot 0.1\right)}
\]
(10)

and using the infrared Cloud-Index \(CI_ir\)

\[
\tau_{ir} = e^{-\left(CI_ir \cdot 0.07\right)}
\]
(11)

For the clear-sky atmospheric transmittance, the airmass is needed which is calculated by

\[
am = \frac{1}{\left[\cos \Theta_Z + 0.15 (93.885 - \Theta_Z)\right]^{1.253}}
\]
(12)

The pressure correction is made by

\[
am_p = am \cdot \frac{p}{1013.25}
\]
(13)

with

\[
\frac{p}{p_0} = \exp\left(-0.0001184 z\right)
\]
(14)
The clear-sky radiation is calculated each 20 minutes (10,30,50 minutes of each hour) for the maps and each 5 minutes (5,10,15,…,55,60 minutes each hour) for the time series. The influence of the clouds is taken into account hourly, therefore all maps (monthly and annual average daily sums) and time series are based on an hourly calculation of the radiation. The DLR-model output for DNI is sampled at a 10km spatial resolution.

Method for Global Horizontal Radiation (GHI)

The calculation of GHI bases on the method of Perez et al (2002) and Ineichen and Perez (2002). GHI is calculated with (Perez et al., 2002)

\[
GHI = ktm \cdot Ghc \cdot (0.0001 \cdot ktm \cdot Ghc + 0.9)
\]
(15)

with \(ktm\)

\[
ktm = 2.36 \cdot CI^5 - 6.2 \cdot CI^4 + 6.22 \cdot CI^3 - 2.63 \cdot CI^2 - 0.58 \cdot CI + 1
\]
(16)

GHI is calculated using the cloud information based on infrared (IR) and visible (VIS) Meteosat data which lead to a single Cloud-Index CI with

\[
CI = \text{max}(CI_{\text{vis}}, CI_{\text{ir}})
\]
(17)

For the determination of the clear-sky global irradiance \(Ghc\) the new formulation as described in Perez et al (2002) is used with

\[
Ghc = cg1 \cdot I_0 \cdot \cos \Theta_Z \cdot \exp(-cg2 \cdot am \cdot (fh1 + fh2 \cdot (TL - 1))) \cdot \exp(0.01 \cdot am^{1.8})
\]
(18)

with

- \(cg1\) = (0.0000509 * alt + 0.868)
- \(cg2\) = (0.0000392 * alt + 0.0387)
- \(I_0\) = Solar constant (eccentricity corrected)
- \(\Theta_Z\) = solar zenith angle
- \(fh1\) = \(\exp(-alt / 8000)\)
- \(fh2\) = \(\exp(-alt / 1250)\)
- \(am\) = elevation corrected air mass
- \(alt\) = altitude in meters
- \(TL\) = Linke turbidity

Due to missing values of the Linke turbidity \(TL\) for the parameterization of the clear-sky atmosphere, data of the atmospheric components ozone, water vapor and aerosols are used. These atmospheric data are also used for the DNI. To derive \(TL\) from atmospheric data we use the following formulation as described by Ineichen and Perez (2002) with

\[
TL = ((11.1 \cdot \ln(b \cdot \frac{I_0}{B_{ncl}})) / am) + 1
\]
(19)

with \(b = 0.664 + (0.163 / fh1)\)

(20)

and the clear-sky direct normal irradiance \(B_{ncl}\)

\[
B_{ncl} = I_0 \cdot \tau_{\text{ra}} \cdot \tau_{\text{ae}} \cdot \tau_{\text{o3}} \cdot \tau_{\text{ga}} \cdot \tau_{\text{wv}}
\]
(21)
The calculation of transmittance coefficients τ_i and the used atmospheric input data are described in the method for the DNI.

The clear-sky radiation is calculated each 20 minutes (10, 30, 50 minutes of each hour) for the maps and each 5 minutes (5, 10, 15, ..., 55, 60 minutes each hour) for the time series. The influence of the clouds is taken into account hourly, therefore all maps (monthly and annual average daily sums) and time series are based on an hourly calculation of the radiation. The DLR/SUNY-model output for GHI is sampled at a 10km spatial resolution.

Input Data

Elevation

![Figure 2: Elevation from GLOBE.](image)

Ozone
The monthly ozone data are taken from TOMS published by the NASA/GSFC TOMS Ozone Processing Team [http://toms.gsfc.nasa.gov/], (McPeters et al., 1998).

![Figure 3: Ozon monthly average for February 2003 in [DU] from TOMS](image)

Water vapor
The daily water vapor data are taken from the NOAA-CIRES Climate Diagnostics Center in Boulder Colorado, USA (NCEP/NCAR) [http://www.cdc.noaa.gov/] (Kalnay et al., 1996).
Aerosol
The monthly climatological aerosol optical thickness data are taken from NASA-GACP, [http://gacp.giss.nasa.gov/index.html], (Mishchenko et al, 2002).

Clouds
The hourly cloud information are based on half-hourly Meteosat-5 IR and VIS data (© EUMETSAT, 2004). The determination of the cloud indices is described in detail in Mannstein et al. (1999) and Schillings et al. (2004). The basic approach for deriving VIS cloud information is described with

\[
CI_{vis} = \frac{\rho - \rho_{\text{min}}}{\rho_{\text{max}} - \rho_{\text{min}}}
\]

where \(\rho\) is the actual reflectivity measured by the satellite, \(\rho_{\text{min}}\) corresponds to the surface albedo and \(\rho_{\text{max}}\) is the maximum reflectivity measured for overcast cloudy conditions. The similar approach is used for IR-data, with the actual, minimum and maximum brightness temperatures \(T\) measured by the satellite:

\[
CI_{ir} = \frac{T_{\text{min}} - T}{T_{\text{min}} - T_{\text{max}}}
\]
Figure 6: Field of view of Meteosat (M-7, IR-channel) © 2004, EUMETSAT.
2 Model output

The solar radiation is calculated for the complete country for the years 2000, 2001 and 2002. The data are made available in a digital GIS-format (ESRI Vector-Shapefile). Within this report, maps of the annual average daily total sum of GHI and DNI are presented. The complete database (ESRI-Shapefile and MS-Access database) can be downloaded from the SWERA-homepage (http://swera.unep.net). Within the ESRI Vector-Shapefile, 3 annual and 36 monthly average daily total sums of GHI and DNI are given for each 10km x 10km georeferenced pixel as shown in the following figures. Additional, hourly time series for the same time period for several interesting sites are delivered in a separate ASCII-File. The sites for the time series are chosen by the project country partners. The output time of the hourly data is UTC.

Time series

For following sites hourly time series of GHI and DNI for three years are calculated:

<table>
<thead>
<tr>
<th>Stations/Sites</th>
<th>Lat(degree)</th>
<th>Long(degree)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Ababa (Obs)</td>
<td>9.03</td>
<td>38.70</td>
<td>2408</td>
</tr>
<tr>
<td>Arba Mintch</td>
<td>6.08</td>
<td>37.63</td>
<td>1290</td>
</tr>
<tr>
<td>Awassa</td>
<td>7.07</td>
<td>36.95</td>
<td>1750</td>
</tr>
<tr>
<td>Bahar Dar</td>
<td>11.60</td>
<td>37.40</td>
<td>1770</td>
</tr>
<tr>
<td>Debre Markos</td>
<td>10.03</td>
<td>37.07</td>
<td>2515</td>
</tr>
<tr>
<td>Debre Zeit</td>
<td>8.73</td>
<td>38.95</td>
<td>1900</td>
</tr>
<tr>
<td>Dire Dewa</td>
<td>9.60</td>
<td>41.87</td>
<td>1210</td>
</tr>
<tr>
<td>Gode</td>
<td>6.10</td>
<td>43.08</td>
<td>320</td>
</tr>
<tr>
<td>Gondar</td>
<td>12.55</td>
<td>37.38</td>
<td>1900</td>
</tr>
<tr>
<td>Gore</td>
<td>8.15</td>
<td>35.53</td>
<td>2002</td>
</tr>
<tr>
<td>Jimma</td>
<td>7.67</td>
<td>36.83</td>
<td>1725</td>
</tr>
<tr>
<td>Kombolcha</td>
<td>11.12</td>
<td>39.73</td>
<td>1903</td>
</tr>
<tr>
<td>Mekele</td>
<td>13.50</td>
<td>39.42</td>
<td>2212</td>
</tr>
<tr>
<td>Metehara</td>
<td>8.87</td>
<td>39.90</td>
<td>960</td>
</tr>
<tr>
<td>Negele</td>
<td>5.03</td>
<td>39.57</td>
<td>1544</td>
</tr>
<tr>
<td>Nekemte</td>
<td>9.08</td>
<td>36.45</td>
<td>2080</td>
</tr>
<tr>
<td>Robe</td>
<td>7.13</td>
<td>40.00</td>
<td>2480</td>
</tr>
</tbody>
</table>

The hourly time series can be downloaded from the SWERA web-site. The name convention of the file name is: Country_Sitename_Lat_Lon_Z_Year. for example Ghana_Abetifi_N6.667_W0.75_Z595

Important notice: The following maps show classified values of kWh/m²/day with a common color ramp for all SWERA countries to give a first impression of the solar regime for each country and for easier comparison with other countries. The provided digital GIS data (available at http://swera.unep.net) give the real (and not classified!) values in Wh/m²/day for each georeferenced pixel with a signal resolution of 1 Wh/m²/day.
Global Horizontal Radiation

Figure 7: Annual average daily total sum of GHI kWh/m²/day for Ethiopia 2000
Figure 8: Annual average daily total sum of GHI in kWh/m²/day for Ethiopia 2001
Figure 9: Annual average daily total sum of GHI in kWh/m²/day for Ethiopia 2002
Direct Normal Radiation

Figure 10: Annual average daily total sum of DNI in kWh/m²/day for Ethiopia 2000
Figure 11: Annual average daily total sum of DNI in kWh/m²/day for Ethiopia 2001
Figure 12: Annual average daily total sum of DNI in kWh/m²/day for Ethiopia 2002
3 Comparison with ground measurement in Ethiopia

No comparison was performed due to missing ground measurement data.

Acknowledgement:

All Meteosat data is under copyright of EUMETSAT (© 2004), Darmstadt, Germany. Many thanks for access to the data set go to the crew of the MARF (Meteosat Archive and Retrieval Facility, Darmstadt) and to our colleagues from DLR-DFD (Deutsches Fernerkundungs-Datenzentrum). Data on aerosol is provided by NASA-GACP Global Aerosol Climatology Project. We also acknowledge the use of the water vapor data from the NCEP Reanalysis by NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, US and the use of the TOMS ozone data provided by the NASA-Goddard Space Flight Center (GSFC), Washington, DC, USA. Special thanks to Rüdiger Buell and Hermann Mannstein at the Institut für Physik der Atmosphäre for doing the archive logistics and cloud data processing of the Meteosat 5 and Meteosat 7 data.

4 References

