Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2.

The Final Scientific Report (FSR) is submitted in two parts (I and II).

FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation.

Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature (However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region).

Data and Resources

Additional Info

Field Value
Source https://gdr.openei.org/submissions/273
Author AltaRock Energy Inc
Maintainer Joe Iovenitti
bureau_code 019:20
Catalog GDR
Contact Phone 510.290.9247
harvest_object_id 2ac5c456-654a-4eed-9559-bb4502d06f0c
harvest_source_id 154c8289-1404-4e71-a217-a08000129ad0
harvest_source_title Geothermal Data Repository (GDR)
Origination Date 2014-01-02
program_code 019:006
Sectors Geothermal
was_harvested true

Package Relationships

Relationship Dataset

Dataset extent

Map data © OpenStreetMap contributors
Tiles by OpenStreetMap